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Abstract—Despite a large body of literature and methods devoted to

the analysis of network traffic, the automatic detection and classification
of network traffic anomalies still represents a major issue for network

operators. The problem becomes even more challenging for cellular

ISPs, both due to the ever growing number of connected devices and
to the constant deployment of new applications and services prone to

performance issues. In this paper we tackle this problem using Machine

Learning (ML) approaches: in particular, we devise a system based

on Neural Networks to unveil the relations between several monitored
traffic features and network anomalies impacting a large number of

customers in an operational cellular network. By training a model based

on Random Neural Networks (RNN), we provide a fast and accurate
anomaly detector and classifier, capable to pinpoint anomalies without

assuming any specific traffic model or particular network behavior. The

proposed solution is evaluated using synthetically generated data from

an operational cellular ISP, drawn from real traffic statistics to resemble
the real cellular network traffic. Our RNN model is capable to detect

and classify different classes of anomalies with high accuracy and low

false alarm rates, even when the volume of such anomalies is small.

Index Terms—Anomaly Detection; Network Measurements; Machine

Learning; Random Neural Networks; DNS Traffic; Cellular ISP.

I. INTRODUCTION

During the last decade, a plethora of new, heterogeneous Internet-

services have become highly popular and omnipresent, imposing new

challenges to network operators. The complex provisioning systems

used by these services induce continuous changes that impact both

operators and customers. Indeed, efficient traffic engineering becomes

a moving target for the operator [1], and management of Quality of

Experience (QoE) gets more cumbersome, potentially affecting the

end customer [2]. Furthermore, due to their traffic characteristics,

applications that provide continuous online presence (e.g., messaging

services) might severely impact the signaling plane of the network,

especially in cellular networks [4]. In such a complex scenario, it is

of vital importance to promptly detect and classify the occurrence of

abrupt changes that could result in anomalies for some of the involved

stakeholders.

In this paper we propose a simple yet effective approach to detect

and classify network and traffic anomalies using supervised Machine

Learning (ML) techniques. Supervised ML offers algorithms which

can learn from and make predictions on data, building models from

labeled input data to take data-driven decisions instead of static ones.

ML techniques provide a promising alternative for detecting and

classifying anomalies based on large sets of traffic descriptors or

features. ML has been largely used in the field of automatic network

traffic classification, and to a lesser extent also applied in the anomaly

detection domain. The literature offers multiple types of ML-based

classifiers, covering a very wide range of approaches and techniques
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[27]. We particularly propose a detection and classification system

based on a new kind of neural network, introduced in recent years

by E. Gelenbe [29]: the Random Neural Network (RNN). As it

has been shown in many previous applications [31], RNNs are a

very powerful tool to capture the intrinsic model behind the data.

Using a standard three-layers neural network topology, we show

that the proposed solution can automatically detected and diagnose

(i.e., classify) different classes of network traffic anomalies with high

accuracy and low false alarm rates, increasing the visibility and easing

the daily management tasks of network operators, specially in current

context where traffic complexity keeps growing.

While the approach we consider is not tied to a specific type of net-

work and can be generalized to any kind of communication system,

results presented in this paper consider the analysis of data captured

in an operational cellular network, and therefore use some features

exclusively available in cellular contexts. Anomalies observed in

a cellular network are normally different from those observed in

typical fixed-line networks [3], given that the type of end-user traffic

is quite different due to the overwhelming usage of smartphone

apps. Given that the types of anomalies we are interested in are

mostly related to issues impacting the end customers of a cellular

network, we particularly focus on the study of application-specific

anomalies. Such anomalies refer to the occurrence of anomalies

linked to popular applications (e.g., YouTube, Facebook, WhatsApp,

etc.) and/or application providers (e.g., Google, Facebook, Apple

Services, etc.). From our operational experience and our previous

studies [3], application-specific anomalies are particularly visible in

the DNS traffic of a network, as current apps and services distributed

by omnipresent Content Delivery Networks (CDNs) extensively rely

on a heavy usage of DNS for content access and location. As

so, abrupt changes in the DNS queries count can be considered

as a symptom of such anomalies [3]. Besides DNS query counts,

our approach relies on the availability of related meta-data, which

can also be observed in the analyzed cellular ISP. These meta-

data may include information related to the end-device (e.g., device

manufacturer, Operative System), the access network (e.g., Radio

Access Technology – RAT, Access Point Name – APN, IP address

of the DNS resolver), and the requested service (e.g., requested Fully

Qualified Domain Name – FQDN).

The remainder of this paper is organized as follows: Sec. II briefly

reviews the related work. Sec. III describes the proposed anomaly

detector and classifier, and briefly overviews the underlying theoret-

ical concepts behind the considered RNN model. Sec. IV presents

the characterization of the cellular traffic and the generation of

synthetic datasets used for evaluation purposes. In Sec. V we discuss

the obtained results, considering both detection and classification of

anomalies, additionally comparing the achieved performance to that

of other ML-based systems proposed in the literature. Finally, Sec. VI

concludes this work.



Table I
FEATURES USED IN THE ANALYSIS.

Field Name Description

Manufacturer Device manufacturer

OS Device operating system

APN Access Point Name

FQDN Fully Qualified Domain Name of remote service

Error Flag Status of the DNS transaction

II. RELATED WORK

There has been considerable amount of research about anomaly

detection in network traffic. A large set of papers apply concepts

and techniques imported from fields like Data Mining [15], Machine

Learning [16], Self-Organizing Maps [12], Genetic Algorithms [13],

Fuzzy Logic [14], etc. Focusing on statistical-based methods, most

work rely on the analysis of scalar time-series, typically of total

volume. They adopt various techniques like Wavelet Transform

[9], [17], CUSUM [18] and others. It is commonly accepted that

information-theoretic concepts, and in particular entropy measures,

are well-suited for anomaly detection [6], [7]. Distribution-based

approaches such as [8] are intrinsically more powerful, as they look

at the entire distribution, rather than only at some specific mode or

aggregation. A comprehensive survey on multiple anomaly detection

techniques applied to different fields beyond network communica-

tions is available in [11].

In terms of ML-based approaches for classifying anomalies, the

field of automatic traffic analysis and classification trough ML

techniques has been extensively studied during the last half-decade.

A standard non-exhaustive list of supervised ML-based approaches

includes the use of Bayesian classifiers [19], linear discriminant

analysis and k-nearest-neighbors [20], decision trees [23] and fea-

ture selection techniques [21], and support vector machines [22].

Unsupervised and semi-supervised learning techniques have also been

used before for traffic analysis and classification, including the use

of k-means, DBSCAN, and AutoClass clustering [24], sub-space

clustering techniques [26], [28], and a combination of k-means and
maximum-likelihood clusters labeling [25]. We refer the interested

reader to [27] for a detailed survey on the different ML techniques

applied to automatic traffic classification.

III. RNNS FOR ANOMALY DETECTION AND CLASSIFICATION

The RNN-based approach introduced in this work has its origins

in the statistical learning field. The method uses a RNN to learn the

relations between a set of n monitored traffic descriptors or features

and the nature or class of the corresponding monitored traffic (i.e.,

normal operation or anomaly type). Our approach works in batch-

mode, continuously analyzing and predicting the class of the traffic

observed during a time bin of length t. Every t seconds, a set of n
input traffic features Xt = {x1(t), x2(t), . . . , xn(t)} is computed,

and a label yt is predicted, using a pre-trained RNN model. This RNN

model basically provides a certain non-linear transfer-block fk(·) :
R

n → K, such that

yt = fk (Xt) = fk (x1(t), x2(t), .., xn(t)) , (1)

where K = {0, 1, 2, . . . , i, . . . ,m − 1} defines the set of m pre-

defined classes which the detector and classifier has been trained to

assign (e.g., 0 for anomaly-free traffic, i for anomaly of type i).
In this paper we take as main traffic feature the total number

of DNS requests issued within a time bin. As we said before,

perturbations in this feature indicate that a device sub-population

deviates from the usual DNS traffic patterns, thus pointing to potential

Table II
INPUT FEATURES FOR THE RNN-BASED DETECTOR AND CLASSIFIER.

Field Feature Description

DNS query querycnt total num of DNS requests

APN

apn h H(APN)

apn avg APN

apn p{99,75,50,25,05} percentiles

Error flag

error code h H(Error flag)

error code avg Error flag

error code p{99,75,50,25,05} percentiles

Manufacturer

manufacturer h H(Manufacturer)

manufacturer avg Manufacturer

manufacturer p{99,75,50,25,05} percentiles

OS

os h H(OS)

os avg OS

os p{99,75,50,25,05} percentiles

FQDN

req fqdn h H(FQDN)

req fqdn avg FQDN

req fqdn p{99,75,50,25,05} percentiles

anomalies. For the sake of better detecting and diagnosing the

anomalies, we additionally take the distributions of DNS query

counts across the fields described in Tab. I. From these distributions,

we compute a set of features describing their shape and carried

information, such as various percentiles and entropy values. Tab. II

describes the specific set of 36 features, which are computed for every

time bin. The set includes the number of observed DNS requests, as

well as multiple percentiles of fields such as associated APN, device

OS and manufacturer, requested FQDN and number of DNS error

messages. We also take as input the average values of these fields,

as well as their entropy, the latter reflecting the dispersion of the

observed samples in the corresponding time bin. As we explain in

Sec. IV, the training of the RNN model is done on top of synthetically

generated datasets, which are by default labeled datasets. Given that

the RNN model is relatively new within the networking community,

we provide next an overview on the basic principles of RNNs, as

well as some details on how we use it in our detection scheme.

The RNN Model

The RNN model can be described as a merge between the classical

Artificial Neural Network (ANN) model and queuing networks.

RNNs are, as ANNs, composed of a set of interconnected neurons.

Each neuron exchanges impulse signals with other neurons and with

the environment, and has a potential associated with it, which is

an integer random variable. The potential of neuron i at time t is
denoted by qt(i). If the potential of neuron i is strictly positive, the

neuron is excited; in this state, it randomly sends signals according

to a Poisson process with rate ri. In this model, neurons exchange

positive and negative signals. The probability that a signal sent by

neuron i goes to neuron j as a positive/negative signal is denoted by
p+i,j /p

−

i,j . The signal leaves the network with probability di. When a

neuron receives a positive signal, its potential is increased by 1; if it

receives a negative signal or if it sends a signal, its potential decreases

by 1. The lowest potential is 0. The flow of positive and negative

signals arriving from the environment to neuron i is also a Poisson

process of rate λ+

i and λ−

i respectively. Finally, instead of working

with branching probabilities p+i,j and p−i,j , we use the neural network

weights w+

i,j = rip
+

i,j and w−

i,j = rip
−

i,j , in analogy to standard

ANNs. In this context, let us define ρi as the limit probability in

which neuron i is excited, which corresponds to a strictly positive

potential:

ρi = lim
t→∞

Pr (qt(i) > 0) (2)



Similar to the classical Jackson’s result for open queuing networks,

E. Gelenbe proved in [29] that this RNN model allows a simple

system of equations with unique solution ρi, given the rates λ+

i

and λ−

i of incoming signals. In a traditional statistical learning

application, a RNN with N interconnected neurons can be seen as a

black-box, where the incoming signal rates λ+ =
(
λ+

1 , λ
+

2 , .., λ
+

N

)

and λ− =
(
λ−

1 , λ
−

2 , .., λ
−

N

)
are the inputs, and the probabilities of

neuron excitement ρ = (ρ1, ρ2, .., ρN ) are the outputs. As in most

RNN applications, we shall consider that λ−

i is 0 for every neuron.

In this context, this black-box has a certain transfer-block f(·) that
relates the N inputs with the N outputs:

ρ = f
(
λ

+
)

(3)

where f(·) depends on the number of neurons N , the con-

nection topology of the RNN, and the neural network weights

w =
{
w+

i,j , w
−

i,j

}
. The weights w are thus the free parameters

of the RNN model, which can be calibrated to build a non-linear

transfer-block f(·) as the one we need. In general, some λ+

i in

(3) are set to 0, and only a subset of ρ is used as output. In the

proposed RNN-based detector and classifier (1), the block f(·) has n
inputs and multiple outputs, one per output class (e.g., normal traffic

and anomaly type). The n inputs correspond to the traffic features

in Tab. II, whereas the outputs correspond to the labels y ∈ K.

Given that the outputs of the RNN ρi are probabilities, the set K

is re-mapped to a binary set where each class is expressed as an

m-dimensional binary vector, where all elements are 0 except from

the one indicating the desired class, which is set to 1. As such, the

neuron with the highest potential, i.e., the highest ρi, indicates the
class i predicted by the model. The calibration of f(·) is performed by
supervised learning, using a learning dataset composed of T input-

output pairs {nt, yt} , t = 1, .., T . We do not provide the details of

the learning algorithm in this paper, but we refer the interested reader

to [30].

As in most applications of neural networks for learning purposes,

we use a three-layers feed-forward network topology, which simpli-

fies the RNN model and speeds-up computations. In such a topology,

the set of N neurons is divided into three subsets: a set of I input

neurons, a set of H hidden neurons, and a set of O output neurons.

Input neurons receive positive signals from the environment and send

signals to hidden neurons. Hidden neurons do no interact with the

environment and only send signals to output neurons. Output neurons

only send signals to the environment. The number of input neurons I
is equal to n. The number of output neurons is O = m. The number

of hidden neurons H is not a-priori fixed, and there is no foolproof

method for setting it [32]. Too many degrees of freedom may cause

over-fitting problems, and too few may reduce the expressive power

to capture the underlying model. A convenient heuristic to choose

H in an ANN is that the total number of weights is roughly T/10
[32] (recall that T is the size of the training dataset). The number of

weights in a RNN is twice that of an ANN (considering the negative

weights), and thus this relation reduces to T/5.

IV. ANOMALY MODELING AND DATA GENERATION

We have evaluated different anomaly detectors for longer than

six months in 2014 with DNS traffic from the operational cellular

network of a nationwide European operator. While the extensive

experimentation allowed us to collect results in a number of paradig-

matic case-studies, the number of traffic anomalies observed in

the corresponding period was relatively low, limiting as such the

performance analysis of the proposed approach exclusively to those

few real cases. In principle, one could resort to test traces obtained

in a controlled environment (laboratory) or by simulations, but these
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Figure 1. Hourly trend of the distribution of number of devices across query
count over one day.

approaches would miss the complexity and heterogeneity of the real

traffic.

To bypass this hurdle, we adopted a methodology based on semi-

synthetic data, derived from real traffic traces as suggested in [10].

Such an approach does not only allow to extensively analyze the

performance of the framework with a large number of synthetic,

yet statistically relevant anomalies, but also permits to protect the

operator’s business sensitive information, as neither real data traces

nor real anomalies are exposed. To illustrate the procedure, next we

explain how to generate semi-synthetic background DNS traffic, as

well as how to replicate some the observed DNS-related anomalies.

A. Construction of Semi-synthetic Background Traffic

The procedure for constructing the semi-synthetic dataset is con-

ceived with the objective of maintaining as much as possible the

structural characteristics of the real, normal operation (i.e., anomaly-

free) traffic, while eliminating possible (unknown) anomalies present

in real traces. Exploring real traces, we observed that the traffic yields

some fundamental temporal characteristics. In particular, the traffic

is non-stationary due to time-of-day variations. This effect is not

limited to the number of active devices, but rather applies to the

entire distribution. Distribution variations depend on the change of the

applications and terminals mix, which in turn induce modifications

in the traffic patterns. Furthermore, we found that, besides a strong

24-hours seasonality, the traffic exhibits a weekly pseudo-cycle with

marked differences between working days and weekends/festivities

[5]. Finally, traffic remains pretty similar at the same time of day

across days of the same type.

The first step of the construction procedure consists of manually

labeling and removing possible anomalous events. However, as the

complete ground truth is unknown in real traffic, we cannot com-

pletely rely on individual labeling of alarms. Therefore, we have

to accept that minor anomalies may go undetected if their effect

is comparable with purely random fluctuations. Then, the dataset

is transformed to eliminate possible residual (unknown) anomalies

present in the real traffic, while preserving the above mentioned

structural characteristics. The transformation procedure is described

as follows.

Let consider a real dataset spanning a measurement period of a few

weeks, for a total ofm consecutive one-day intervals (e.g.,m = 28 in
our case). Each one-day period starts and ends at 4:00 am local time:

this is the time-of-day where the number of active devices reaches its

minimum (considering a single time-zone). Denote by mW and mF

the number of working and festivity (W- and F-) days, respectively,

in the real dataset (e.g., mF = 8 and mW = 20), and by K the

total number of 1-min time bins (K = 28 · 24 · 60 = 40320). For
each device i consider the vector di ≡ {cτ0i (k), k = 1, 2, . . . ,K}
at the minimum timescale (τ0 = 1 minute) across the whole real

trace duration, where each element cτ0i (k) is the list of the DNS

measurements related to device i at time k. For those time bins where



device i is inactive, the corresponding element in di is empty. We now

divide this vector into m blocks, each one corresponding to a single

one-day interval. Each block is classified as W- or F-block based on

the calendar day. At this point we apply a random scrambling within

the W class: each W-block element of di is randomly relocated at the

same time position selected among all W-days. The same scrambling

is applied independently to the F-blocks. In this way we obtain a

new vector d̃i where the position of the blocks has been scrambled,

separately for W- and F-blocks, but the time location and the F/W

intervals have been maintained. Finally, from the set of scrambled

vectors d̃i we can derive a new set of distributions for each time bin

k and timescale τ , for all the considered traffic features.

The dataset obtained in this way retains certain characteristics of

the real dataset, while others are eliminated. The most important

change is that the random scrambling of the individual components

di → d̃i results in the homogenization of the individual daily profiles

— separately for W- and F-days. This eliminates any minor residual

local anomaly that survived the manual labeling by spreading it out

across all one-day intervals of the same F/W type. In other words,

all W-days in the new dataset share the same (synthetic) aggregate

daily profile. Same applies to F-days. Note however that the synthetic

dataset retains the most important characteristics of the real process.

In the first place, it keeps the time-of-day variations of the number

of active devices. Secondly, the semi-synthetic dataset maintains the

differentiation between the two classes of W- and F- days, although

it eliminates any differentiation within each class (e.g., between

Saturday and Sunday). Thirdly, it keeps the differentiation between

distributions for different time-of-day. This is clear from Fig. 1(a),

which shows the hourly Cumulative Distribution Functions (CDFs)

of the number of devices across query count during one day of the

semi-synthetic dataset. The result of the procedure is an anomaly-free

DNS dataset structurally similar to the real trace.

B. Modeling and Generation of Synthetic Anomalies

During six months of experimentation we encountered a few

recurring large-scale DNS traffic anomalies. Investigating these events

we found some common traits and we conceived a procedure for

reproducing them along with their most relevant characteristics. In

particular, we identified two exemplary event types, E1 and E2

from now. In both cases, we model an outage of an Internet service

for a specific sub-population of devices, which react by repeatedly

and constantly issuing DNS queries to resolve the requested service

throughout the anomaly. Involved devices are identified by fixing

a specific OS (with its different versions). Moreover, we aim at

modeling the correlation between the selected sub-population and

the unreachable service. Therefore, we separately rank the 2nd-Level

Domain (2LD) of the FQDNs for anomalous and background traffic,

and select the most popular 2LD of the former that is not in the

latter. As a simple example of such types of anomalies, we have

observed events in which Apple devices running a specific version

of iOS lost their persistent connectivity to certain servers providing

the Apple push-notification service (which is the core of the remote

notifications used in virtually every iOS App), resulting in a surge

of DNS requests to locate new servers, and the resulting “scanning”

of the complete IP address space of Apple push-notification service.

Such an event was perceived by the cellular ISP as an internal sort

of DDoS attack, as a large population of their own customer devices

starting “bombarding” the network, starving resources at the access

in some specific regions.

Event E1: This type models the case of a short lived (i.e., hours)

high intensity anomaly (e.g., 10% of devices repeating a request

every few seconds), where all the involved devices are produced by

Type E1 E2 E3

Start time t1 9:00 13:00 18:00

Duration d 2h 1 day 1h

Involved devices D 10% 5% 3%

Back-off time 5 sec 180 sec 20 sec

Manufacturer single popular multiple multiple

OS single single multiple

Error flag +5% timeout — —

FQDN top-2LD top-2LD top-2LD

Table III
ANOMALOUS DNS TRAFFIC FEATURES FOR TYPESE1, E2, E3 .

a single manufacturer and run the same OS. In this case, the number

of involved terminals and the overall number of additional queries is

such to overload the local DNS servers. The latter effect is modeled

by increasing the number of time-out codes in the Error Flag field.

Event E2: This type models a long lasting (i.e., days) low-

intensity anomaly (e.g., 5% of devices repeating requests every few

minutes). Differently from the previous case, the involved terminals

are produced by multiple manufacturers, even if they share the same

OS. Given the low-intensity, we did not introduce a modification in

the distribution of the Error Flag. Fig. 1(b) shows the changes in the

distribution of number of devices across query counts introduced by

this event (wrt Fig. 1(a)). Note that although E2 type anomalies are

of relatively low intensity, their identification is important as, in our

experience, they may lead to problems on the signaling plane.

Event E3: We additionally introduce a third class of anomalies

type E3 which models a scenario in which all the customers of certain

virtual operators (reflected by specific APNs) are affected by short

lived service outages, responding with a surge in the number of DNS

queries.

Tab. III summarizes the characteristics of the three event types

and the actual values used for generating the anomalous dataset in

the experiments discussed next. To illustrate the anomaly generation

procedure, we consider an event of type E1 of duration d = 2h,
starting at t1 = 9 : 00. Starting from t1 at each time bin, D = 10%
of all the active terminals are randomly extracted from the semi-

synthetic background traffic, such that the OS is the selected one and

the manufacturer is always the same. For each involved terminal,

we generate one additional DNS query every 5 seconds, which are

then added to the semi-synthetic dataset. The corresponding FQDN

is randomly chosen among the domains in the 2LD identified as

explained above. Finally, the Error Flag is changed to time-out in

5% of the overall DNS queries, so as to model the resolver overload.

The last step consists of mangling both anomalous and background

traffic. The procedure for generating types E2 and E3 is analogous,

but differs in the selection of the specifically impacted features.

V. ANOMALY DETECTION AND CLASSIFICATION PERFORMANCE

In this section we assess the proposed RNN-based approach, firstly

by evaluating its detection performance, and then by comparing

its classification performance against other ML-based approaches.

For evaluation purposes and following the data generation approach

described in Sec. IV, we construct a fully labeled dataset consisting

of a full month of synthetically generated cellular network DNS

measurements, reported with a time granularity of 5 minutes. The

dataset contains normal operation traffic, with multiple instances of

the aforementioned E1, E2 and E3 anomalies, as specified in Tab. III.

To perform a better evaluation, we introduce multiple instances of

each anomaly type with a different fraction of the device population

involved in the anomaly. In total we include 16 different variations of

these anomalies, added on top of the 1-month anomaly-free traffic.
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Figure 2. ROC curves for the detection of anomalies types E1, E2 and E3.

For each of the anomaly types E1 and E2 we include 7 anomaly

variations, involving a number of devices going from 0.5% to 20%
of the overall population (0.5%, 1%, 2%, 5%, 8%, 10%, 20%). For

E3 we include two different intensities, considering a population of

3% and 12%, which correspond to the actual size of virtual-operator

customer populations, as observed from our real measurements. Each

time bin is assigned a class, either normal - label 0, or anomalous -

label 1, 2 or 3 for the three anomaly types respectively.

A. Detection Performance

Let us first get an initial picture of the detection capabilities of the

RNN-based approach, by testing the detection and false alarm rates

on the complete set of 16 variations of anomalies. To reduce biased

results, the training and testing of the RNN model is performed by

10-fold cross validation, using a custom implementation of the RNN

model in Java. Detection performance is evaluated in a time bin basis

and not in an event basis: this means that there are 24 anomalous time

slots for each anomaly variation of type E1 (i.e., 7× 24 = 168 time

slots in total), 12×24 = 288 time slots for each variation of type E2

(i.e., 7 × 288 = 2016 in total) and 12 time slots for each variation

of type E3 (i.e., 2× 12 = 24 time slots in total). We follow such a

direction as we are not only interested in detecting the occurrence of

an event, but also its full span/duration. Note that anomaly classes

are highly imbalanced, which in principle imposes major challenges

in the training phase [32]. To counterbalance this problem, we resort

to a standard over-sampling approach, in which we add copies of

instances from the under-represented classes, in this case anomalies

of types E1 and E3, to perform the training.

Fig. 2 depicts the Receiver Operating Characteristic (ROC) curves

obtained for the detection of the complete set of anomalies. Fig. 2(a)

provides the results obtained for the RNN model, whereas Fig. 2(b)

shows the comparative results obtained for a Support Vector Machine

(SVM) model. We selected this approach for comparison based on

the a-priori good performance shown by the application of SVMs

in previous work on anomaly detection [11] and traffic classification

[27]. The RNN model can correctly detect more than 90% of the

anomaly instances with different intensities with a false alarm rate

below 1%, but it is not capable to properly detect part of the slowest

intensity anomalies, as we show next. The SVM model achieves

slightly worse detection performance, resulting in a similar true

positives rate but a false alarm rate above 3%.

Fig. 3 splits the results obtained for the RNN model by anomaly

type and by intensity level. Whereas Fig. 3(a) and Fig. 3(c) show

that anomalies of type E1 and E3 are detected with almost no false

alarms for all the evaluated intensity levels, Fig. 3(b) shows that the

lowest intensity anomalies of type E2, i.e., those affecting only 1%

and 0.5% of the devices population, are partially missed by the RNN-

based detector. Nevertheless, we can claim that detection performance

is very high, even in the case of low intensity anomalies, starting at

2% for all the evaluated anomaly types, and even as low as 0.5% for

anomalies of type E1.

B. Classification Performance vs ML Approaches

We move on now to the evaluation of the anomaly classification

capabilities of the RNN model. We additionally evaluate other ML-

based classifiers typically used in the literature, for comparison pur-

poses. In particular, we consider the following classifiers: : Support

Vector Machines (SVM), C4.5 Decision Trees (C4.5), Naive Bayes

(NB), and Locally-Weighted-based Learning (LWL). We use the well-

known Weka Machine-Learning software tool1 to calibrate these ML-

based algorithms and to perform the evaluations. We address the

interested reader to the survey [27] and to the Weka documentation

for additional information on the different configuration parameters

of each algorithm.

To evaluate and compare the performance and virtues of the classi-

fication models, we consider three standard metrics: Global Accuracy

GA, Recall and Precision. GA indicates the percentage of correctly

classified instances (time bins) among the total number of instances.

Recall Ri is the number of instances from class i = 0, . . . , 3 correctly
classified (TPi), divided by the number of instances in class i (ni).

Precision Pi is the percentage of instances correctly classified as

belonging to class i among all the instances classified as belonging to
class i, including true and false positives (FPi). Recall and precision

are two widely used performance metrics in classification. Precision

permits to measure the fidelity of the classification model regarding

each particular class, whereas recall measures the per-class accuracy.

Ri =
TPi

ni

, Pi =
TPi

TPi + FPi

, GA =

M∑
i=1

TPi

n
(4)

Fig. 4 reports the performance of the five compared classifiers

in the classification of all the 5-minutes time bins. To limit biased

results, all the evaluations presented use 10-fold cross-validation.

Reported results refer to optimal parameter settings, after thorough

testing. According to Fig. 4(a), RNN, SVM and C4.5 achieve high

overall classification accuracy, above 90% in the three cases, and with

a slightly better performance for the RNN model. The NB and LWL

models achieve worse results, clearly suggesting that the underlying

hypotheses of both models do not hold in this case. In terms of

precision and recall, depicted in Figs. 4(b) and 4(c) respectively,

the RNN model outperforms the other classifiers in all the classes,

evidencing the nice properties introduced by such a model. Still, as

already evidenced in the results presented in Fig. 3(b), the RNN

model can not correctly deal with all the intensities of the E2

anomalies, resulting in worse performance for this specific class. The

SVM model achieves high precision for anomalies of type E2, but

results in a very poor accuracy for this specific type of anomalies,

with a recall as low as 57%. Due to page-length limitations we do not

include the confusion matrix for each classifier, but the main source

of under-performance for the SVM model in this case comes from

completely missing the anomalies, and not by misclassifying them

into another anomaly class. All in all, results clearly suggest that the

proposed RNN-based anomaly detection and classification approach

is highly accurate and can diagnose the studied anomalies properly.

As future work, we shall dig deeper into feature selection approaches

to improve the performance of the model with the lowest intensity

anomalies of type E2.

VI. CONCLUSIONS

In this paper we have presented a RNN-based approach for

detection and classification of large scale Internet anomalies based

on the analysis of passively captured network data. The approach is

1Weka Data Mining, at http://www.cs.waikato.ac.nz/ml/weka/.
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(a) Anomaly type E1.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

FPR (%)

T
P

R
 (

%
)

20%

10%

8%

5%

2%

1%

0.5%

(b) Anomaly type E2.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

FPR (%)

T
P

R
 (

%
)

12%

3%

(c) Anomaly type E3.

Figure 3. ROC curves for the detection of anomalies, split by anomaly types and different intensity levels. Whereas anomalies of type E1 and E3 are detected
with almost no false alarms, the low intensity anomalies of type E2 are partially missed by the RNN-based detector.
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(b) Precision.
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Figure 4. Classification Accuracy, True Positives Rate, Precision, and Recall for normal operation instances and different anomaly type events. The performance
of the RNN model is almost perfect for normal traffic and anomalies of type 1 and 3, but quality significantly drops for the anomaly type 2.

based on a new breed of neural networks, which has shown high

performance in many other applications besides anomaly detection

and classification. We believe that ML-based approaches can provide

high insights and visibility for daily network operations, specially in

current context where traffic complexity keeps growing. Given the

general lack of large-scale ground-truth datasets to test the perfor-

mance of systems like ours, we developed an approach to generate

semi-synthetic data, derived from real traffic traces. We believe that

this is also an important contribution, as it would help the owners of

real data to make such datasets available for the research community

without disclosing any privacy or business sensitive information. As

future work, we are conducting Out-of-Sample (OSS) tests to verify

the generalization and applicability of the trained model in a real

setup, by assessing its performance with other classes of anomalies

not available in the training set.
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