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ABSTRACT

The ever-increasing number of mobile devices connected to
cellular networks is heavily modifying the traffic observed in
these networks. The traffic volumes and patterns generated
by smartphones pose novel challenges to cellular network
operators. One of these challenges relates to the automatic
detection and diagnosis of unforeseen network traffic anoma-
lies caused by specific devices and apps. Synchronized apps
generating flashcrowds, device-specific traffic misbehaviors
impacting network performance and end-users Quality of
Experience (QoE), and other similar anomalies need to be
rapidly detected and diagnosed. In this paper we charac-
terize a new type of anomalies impacting cellular networks,
caused by the multiple, constantly-connected apps running
in smartphones and other end-user devices. We additionally
devise a novel detection and classification technique based
on semi-supervised Machine Learning (ML) algorithms to
automatically detect and diagnose anomalies of this class
with minimal training, and compare its performance to that
achieved by other well-known supervised learning classifiers.
The proposed solution is evaluated using synthetically gen-
erated data from an operational cellular ISP, drawn from
real traffic statistics to resemble both the real cellular net-
work traffic and the characterized type of anomalies.
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1. INTRODUCTION
During the last decade, a plethora of new, heterogeneous

Internet services have become highly popular, imposing new
challenges to network operators. In particular, cellular net-
work operators have witnessed an astonishing increase of
heterogeneous mobile devices (smartphones, tablets, M2M
devices such as telemeters, etc.) running such services. The
applications supported by these devices introduce new traf-
fic patterns which are potentially harmful to the network.
For example, due to their traffic characteristics, applications
that provide continuous online presence (e.g., messaging ser-
vices) might severely impact the signaling plane of the net-
work, especially in cellular networks [3]. In such a complex
scenario, it is of vital importance to promptly detect and
classify the occurrence of abrupt changes that could result
in anomalies for some of the involved stakeholders.

In this paper we propose a simple yet effective approach
to detect and classify network and traffic anomalies using
Machine Learning (ML) techniques. The literature offers
multiple types of ML-based classifiers, covering a very wide
range of approaches and techniques [21]. Our work brings
two main contributions: firstly, we present a semi-supervised
approach for detecting and diagnosing anomalous traffic pat-
terns linked to different device classes and applications, based
on clustering techniques; secondly, we analyze one of these
anomalies in which an Apple service outage results in iPhone
and other Apple devices flooding the network with connec-
tion attempts, providing tangible evidence of the potential
harms introduced in this new apps context.

While the approach we consider is not tied to a specific
type of network and can be generalized to any kind of com-
munication system, results presented in this paper consider
the analysis of data captured in an operational cellular net-
work, and therefore use some features exclusively available
in cellular contexts. From our operational experience and
our previous studies [2], app-specific anomalies are partic-
ularly visible in the DNS traffic of a network, as most of
current apps and services distributed by omnipresent Con-
tent Delivery Networks (CDNs) extensively rely on a heavy
usage of DNS for content access and location. As so, abrupt
changes in the DNS query count can be considered as a
symptom of such anomalies. Besides DNS query counts,
our approach relies on the availability of related meta-data,
which can also be observed in the analyzed cellular ISP.
These meta-data may include information related to the
end-device (e.g., device manufacturer, Operative System),
the access network (e.g., Radio Access Technology – RAT,
Access Point Name – APN, IP address of the DNS resolver),



and the requested service (e.g., requested Fully Qualified Do-
main Name – FQDN).

The remainder of this paper is organized as follows: Sec. 2
briefly reviews the related work. In Sec. 3 we overview
and analyze the occurrence of an app-generated anomaly
in an operational cellular ISP. Sec. 4 describes the proposed
clustering-based anomaly detector and classifier, and briefly
overviews the underlying concepts. Sec. 5 presents the char-
acterization of the cellular traffic and the generation of syn-
thetic datasets used for evaluation purposes. In Sec. 6 we
discuss the obtained results, considering both the detection
and classification of anomalies, additionally comparing the
achieved performance to that of other ML-based systems
proposed in the literature. Sec. 7 concludes this work.

2. RELATED WORK
There has been considerable amount of research on anomaly

detection in network traffic. A large set of papers apply con-
cepts and techniques imported from fields like Data Min-
ing [10] and Machine Learning [11]. Focusing on statistical-
based methods, most work rely on the analysis of scalar
time-series, typically of total volume. They adopt various
techniques like Discrete Wavelet Transform [12], CUSUM
[13] and others. It is commonly accepted that information-
theoretic concepts, and in particular entropy measures, are
well-suited for anomaly detection [4, 5]. Distribution-based
approaches such as [7] are intrinsically more powerful, as
they look at the entire distribution, rather than only at
some specific mode or aggregation. A comprehensive sur-
vey on multiple anomaly detection techniques applied to
different fields beyond network communications is available
in [9]. In terms of ML-based approaches for classifying
anomalies, the field of automatic traffic analysis and clas-
sification trough ML techniques has been extensively stud-
ied during the last half-decade. A standard non-exhaustive
list of supervised ML-based approaches includes the use of
Bayesian classifiers [14], linear discriminant analysis and k-
nearest-neighbors [15], decision trees and feature selection
techniques [16], and support vector machines [17]. Unsu-
pervised and semi-supervised learning techniques have also
been used before for traffic analysis and classification, in-
cluding the use of k-means, DBSCAN, and AutoClass clus-
tering [18], sub-space clustering techniques [20, 22], and a
combination of k-means and maximum-likelihood clusters
labeling [19]. Closely linked to this work, we have recently
addressed the same detection and classification problem us-
ing supervised ML based techniques [23]. The main differ-
ences of current paper are on both the application of semi-
supervised, clustering-based techniques, as well as the usage
of a smaller, non-bootstrapping based set of input features.
We refer the interested reader to [21] for a detailed survey
on the different ML techniques applied to automatic traffic
classification.

3. APP-GENERATED ANOMALIES
We start by the analysis of a real case study based on

the diagnosis of a large scale anomaly observed in an op-
erational cellular network. Fig. 1 shows the time series of
the total DNS query count observed in the network for two
consecutive days. Two anomalous spikes are observed be-
tween 9:00 and 11:00 of the second day. Note that the scale
of the anomaly is highly significant, suggesting a potentially
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Figure 1: DNS query counts and timeouts during an
Apple-related anomaly.
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Figure 2: DNS query counts per device OS.
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Figure 3: Entropy of features revealing an anomaly
linked to OS and specific requested FQDNs.
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Figure 4: FQDNs requested by the affected devices.

major impact in the network. During the anomaly we also
observe an increase of DNS query timeouts, pointing to a
degradation in the performance of the DNS servers due to
the steep increase of requests. Fig. 2 depicts the same infor-
mation as before, but discriminating devices by OS type -
note that we just consider the two most popular OS types,
namely iOS and Android. Interestingly, while Android de-
vices do not cause any abnormal increase in the number of
DNS queries as compared to normal operation (day before),
iOS devices seem to be the ones causing the aforementioned
spikes, pointing to an anomaly potentially linked to iOS only.

Fig. 3 provides a closer look into the anomaly, compar-
ing the time series of the total DNS requests count and the
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Figure 5: TCP flags during the anomaly.

entropy of two selected features: FQDN and OS. We use
the empirical entropy of these features, namely H(FQDN)
and H(OS) as a better means to visualize changes in the
distribution of such features during the anomaly [4]. Both
features present a very high correlation with the spikes in
the DNS count, suggesting again that the issue might be
due to specific OS - iOS in this case, querying for cer-
tain services - i.e., FQDNs. Fig. 4 reports the mostly re-
quested FQDNs during the anomaly. While some of the
top FQDNs present a stable behavior - *.facebook.com and
*.google.com, the FQDNs *.apple.com.akadns.net, *.push-
apple.com.akadns.net, and *.push.apple.com show a signifi-
cant increase, pointing to a problem in the push notification
service used by Apple, and hosted by the Akamai CDN. This
service is the one providing persistent connectivity for iOS
devices. The conclusion obtained from this analysis is that,
for some unknown reason, iOS devices lost connectivity to
the servers providing the push notification service, resulting
in a heavy increase of DNS queries to locate new servers, and
the resulting “scanning” of the complete IP address space of
the Apple push-notification service.

We also evaluate the effect of this anomaly on the lower
transport layer. The # of SYN, ACK, and reset (RST+ACK)
packets generated inbound and outbound for the anomalous
traffic subset is depicted in fig. 5. To an increasing amount
of connection attempts by the impacted devices (increase
in the SYN count), servers refuse/reset the connection, im-
plying that the requested service is temporary unavailable.
During the anomaly, the amount of ACK packets drops to
zero, meaning that none of the devices was able to estab-
lish a connection. The scheduling strategy used in cellu-
lar networks at the Radio Access Network (RAN) assigns
higher bandwidth to users exceeding a certain traffic rate.
Therefore, the high amount of connection attempts can di-
rectly result in a waste of network resources at the RAN,
which could even impact the performance of those users not
responsible for this specific anomaly. In this perspective,
the Apple-related anomaly looks very similar to an internal
DDoS attack, as a large population of the customer devices
started “bombarding” the network, starving resources at the
access in some specific regions. Next, we devise an approach
to automatically detect and classify this type of anomalies,
using clustering techniques.

4. CLUSTERING-BASED AD
The clustering-based approach introduced in this work,

referred to as K-CDA (K-means Clustering-based Detec-
tor of Anomalies) has the main advantage of being semi-
supervised, which means that the amount of learning data
which is required for training/calibration purposes if signif-
icantly less than that required by supervised approaches.

Given a training set of m measurements consisting each of n
features, our method uses first the well knownK-means clus-
tering algorithm [6] to partition the complete feature space
X ∈ R

m×n in a set of K clusters. The centroid of each of
these K clusters is then computed, and a label is assigned to
each of them, based on majority voting performed on a small
sample of ground truth labels among the measurements be-
longing to each cluster. In particular, we decide the class y
of a cluster based on the real label of only 5% of the samples
within this cluster, randomly sampled. We have verified that
this small fraction is good enough to provide proper detec-
tion and classification results. Once all clusters have been
labeled, the standard approach to follow for clustering-based
classification is to assign, to every new sample, the class of
the cluster with the closest centroid [20]. However, given
that the real number of clusters K is not known in advance,
following such an approach might be counterproductive and
lead to less robust results [20].

Indeed, one well-known limitation of using K-means as
clustering algorithm is that one needs to define in advance
the number of K clusters to identify, which in principle
is completely unknown, especially when no labeled data is
used. Selecting a small value for K results in bigger and
potentially less homogeneous clusters; having a big number
of clusters has the advantage of resulting in more homoge-
neous clusters, but if this number is too big, the analysis and
interpretation of results becomes more cumbersome and the
advantages of grouping samples together is partially lost.
To partially solve this issue, we resort to a simple heuristic,
based once again on a majority voting approach. We set
K to a value equal to 0.1% of the training sample size, i.e.,
K = m/1000, and then decide on the label of a new sample
using a k-NN (Nearest Neighbors) algorithm, computing the
distance of the new sample to all the K centroids, and using
majority voting on the labels of the k closest centroids. By
doing so, we obtain more homogeneous clusters, and limit
the impacts of single centroid-based classification. The value
of k clearly depends on the value of K: based on empirical
testing, we set k = K/3 (naturally, all values are rounded to
obtain integer numbers for both k and K).

The final ingredient of our approach is on the particu-
lar way we compute distances: instead of using a simple
Euclidean distance, we compute the per-cluster normalized
Mahalanobis distance between every new sample and the
K labeled centroids. The Mahalanobis distance takes into
account the correlation between samples, dividing the stan-
dard Euclidean distance by the variance of the samples be-
longing to each cluster. In a nutshell, if a cluster has a
bigger variance on a certain direction (i.e., feature), then
the Mahalanobis distance will make samples closer to this
cluster than to other ones with smaller variance, making less
compact clusters closer to samples.

In this paper we take as main traffic feature the total
number of DNS requests issued within a time bin. As we
saw in Sec. 3, perturbations in this feature indicate that a
device sub-population deviates from the usual DNS traffic
patterns, thus pointing to potential anomalies. For the sake
of better detecting and diagnosing the anomalies, we addi-
tionally take the distributions of DNS query counts across
the fields described in Sec. 1. From these distributions, we
compute a set of features describing their shape and carried
information, such as various percentiles and entropy values.
Tab. 1 describes the specific set of n = 36 features, which



Field Feature Description

DNS query querycnt # DNS requests

APN

apn h H(APN)

apn avg APN

apn p{99,75,50,25,05} percentiles

Error flag

error code h H(Error flag)

error code avg Error flag

error code p{99,75,50,25,05} percentiles

Manufacturer

manufacturer h H(Manufacturer)

manufacturer avg Manufacturer

manufacturer p{99,75,50,25,05} percentiles

OS

os h H(OS)

os avg OS

os p{99,75,50,25,05} percentiles

FQDN

req fqdn h H(FQDN)

req fqdn avg FQDN

req fqdn p{99,75,50,25,05} percentiles

Table 1: Input features for K-CDA.

are computed for every time bin. The set includes the num-
ber of observed DNS requests, as well as multiple percentiles
of fields such as associated APN, device OS and manufac-
turer, requested FQDN and number of DNS error messages.
We also take as input the average values of these fields, as
well as their entropy, the latter reflecting the dispersion of
the observed samples in the corresponding time bin. As we
explain in Sec. 5, the training of the K-CDA algorithm is
done on top of synthetically generated datasets, which are
by default labeled datasets.

5. ANOMALY GENERATION
We have evaluated different anomaly detectors for longer

than six months in 2014 with DNS traffic from the opera-
tional cellular network of a nationwide European operator.
While the extensive experimentation allowed us to collect
results in a number of paradigmatic case-studies, the num-
ber of traffic anomalies observed in the corresponding period
was relatively low, limiting as such the performance analy-
sis of the proposed approach exclusively to those few real
cases. In principle, one could resort to test traces obtained
in a controlled environment (laboratory) or by simulations,
but these approaches would miss the complexity and hetero-
geneity of the real traffic. To bypass this hurdle, we adopted
a methodology based on semi-synthetic data, derived from
real traffic traces as suggested in [8]. Such an approach
does not only allow to extensively analyze the performance
of the proposed solution with a large number of synthetic,
yet statistically relevant anomalies, but also permits to pro-
tect the operator’s business sensitive information, as neither
real data traces nor real anomalies are exposed. We do not
present the details on how to generate semi-synthetic back-
ground DNS traffic due to space limitation, but point the
interested reader to [1] for further details.

During these months we have encountered a few recurring
large-scale DNS traffic anomalies. Investigating these events
we found some common traits and conceived a procedure
for reproducing them along with their most relevant char-
acteristics. In particular, we identified two exemplary event
types, E1 and E2 from now on. In both cases, we model an
outage of an Internet service for a specific sub-population
of devices, which react by repeatedly and constantly issuing
DNS queries to resolve the requested service throughout the
anomaly, exactly as presented in Sec. 3. Involved devices are
identified by fixing a specific OS (with its different versions).
Moreover, we aim at modeling the correlation between the

Type E1 E2 E3

Start time t1 9:00 13:00 18:00

Duration d 2h 1 day 1h

Involved devices D 10% 5% 3%

Back-off time 5 sec 180 sec 20 sec

Manufacturer single popular multiple multiple

OS single single multiple

Error flag +5% timeout — —

FQDN top-2LD top-2LD top-2LD

Table 2: Anomalous DNS traffic features.

selected sub-population and the unreachable service. There-
fore, we separately rank the 2nd-Level Domain (2LD) of the
FQDNs for anomalous and background traffic, and select the
most popular 2LD of the former that is not in the latter.

Event E1. This type models the case of a short lived (i.e.,
hours) high intensity anomaly (e.g., 10% of devices repeating
a request every few seconds), where all the involved devices
are produced by a single manufacturer and run the same
OS. In this case, the number of involved terminals and the
overall number of additional queries is such to overload the
local DNS servers. The latter effect is modeled by increasing
the number of time-out codes in the Error Flag field.

Event E2. This type models a long lasting (i.e., days) low-
intensity anomaly (e.g., 5% of devices repeating requests
every few minutes). Differently from the previous case, the
involved terminals are produced by multiple manufacturers,
even if they share the same OS. Given the low-intensity,
we do not introduce a modification in the distribution of the
Error Flag. E2 anomalies are of relatively low intensity, thus
tend to be more difficult to detect than those of type E1.

Event E3. We additionally introduce a third class of anoma-
lies type E3 which models a scenario in which all the cus-
tomers of certain virtual operators (reflected by specific APNs)
are affected by short lived service outages, responding with
a surge in the number of DNS queries.

Tab. 2 summarizes the characteristics of the three event
types and the actual values used for generating the anoma-
lous dataset in the experiments discussed next. To illustrate
the anomaly generation procedure, we consider an event of
type E1 of duration d = 2h, starting at t1 = 9 : 00, following
the example presented in Sec. 3. Starting from t1 at each
time bin, D = 10% of all the active terminals are randomly
extracted from the semi-synthetic background traffic, such
that the OS is the selected one and the manufacturer is al-
ways the same. For each involved terminal, we generate one
additional DNS query every 5 seconds, which are then added
to the semi-synthetic dataset. The corresponding FQDN is
randomly chosen among the domains in the 2LD identified
as explained above. Finally, the Error Flag is changed to
time-out in 5% of the overall DNS queries, so as to model
the resolver overload. The last step consists of mangling
both the anomalous and the background traffic. The proce-
dure for generating types E2 and E3 is analogous, but differs
in the selection of the specifically impacted features.

6. K-CDA PERFORMANCE
In this section we assess the proposed K-CDA approach,

evaluating both its detection and classification performance,
additionally comparing it against other fully supervised, ML-



based approaches. For evaluation purposes, we construct
a fully labeled dataset consisting of a full month of syn-
thetically generated cellular network DNS measurements,
reported with a time granularity of 5 minutes. The dataset
contains normal operation traffic, with multiple instances of
the aforementioned E1, E2 and E3 anomalies, as specified in
Tab. 2. To perform a better evaluation, we introduce multi-
ple instances of each anomaly type with a different fraction
of the device population involved in the anomaly. In total
we include 16 different variations of these anomalies, added
on top of the 1-month anomaly-free traffic. For each of the
anomaly types E1 and E2 we include 7 anomaly variations,
involving a number of devices going from 0.5% to 20% of the
overall population (0.5%, 1%, 2%, 5%, 8%, 10%, 20%). For
E3 we include two different intensities, considering a popu-
lation of 3% and 12%, which correspond to the actual size
of virtual-operator customer populations, as observed from
our real measurements. Each time bin is assigned a class,
either normal - label 0, or anomalous - label 1, 2 or 3 for the
three anomaly types respectively.

6.1 Detection Performance
Let us first get an initial picture of the detection capa-

bilities of the K-CDA approach, by testing the detection
and false alarm rates on the complete set of 16 variations of
anomalies. To reduce biased results, the training and test-
ing of the K-CDA approach is performed by 10-fold cross
validation. Detection performance is evaluated in a time bin
basis and not in an event basis: this means that there are
24 anomalous time slots for each anomaly variation of type
E1 (i.e., 7 × 24 = 168 time slots in total), 12 × 24 = 288
time slots for each variation of type E2 (i.e., 7× 288 = 2016
in total) and 12 time slots for each variation of type E3

(i.e., 2 × 12 = 24 time slots in total). We follow such a
direction as we are not only interested in detecting the oc-
currence of an event, but also its full span/duration. Note
that anomaly classes are highly imbalanced, which in prin-
ciple imposes major challenges in the training phase. To
counterbalance this problem, we resort to a standard over-
sampling approach, in which we add copies of instances from
the under-represented classes (E1 and E3) to perform the
training.

Fig. 6 depicts the Receiver Operating Characteristic (ROC)
curves obtained for the detection of the complete set of
anomalies. Fig. 6(a) provides the results obtained for the K-
CDA approach, whereas Figs. 6(b-d) show the comparative
results obtained for three, well-known supervised based de-
tectors using Neural Networks (MLP), Support Vector Ma-
chines (SVM), and C4.5 Decision Trees (C4.5). We selected
these other detectors for comparison based on the a-priori
good performance shown by their application in previous
work on anomaly detection [9] and traffic classification [21].
We use the well-known Weka Machine-Learning software
tool to calibrate these ML-based algorithms and to perform
the evaluations. We address the interested reader to the sur-
vey [21] and to the Weka doc. for additional information on
the configuration parameters of each algorithm.

The K-CDA approach can correctly detect around 70%
of the anomaly instances with different intensities without
false alarms, but it is not capable to properly detect part of
the smallest intensity anomalies. The SVM model achieves
slightly worse detection performance, resulting in a similar
true positives rate but a false alarm rate above 3%. Both

the MLP and the C4.5 models achieve better performance,
detecting around 80% of the anomalies without false alarms,
but they also fail to detect the smallest intensity ones. As a
first conclusion, we can claim that theK-CDA detection per-
formance is comparable to that achieved by the supervised
models, but using only 5% of labeled samples for training
purposes, which is a major advantage.

6.2 Classification Performance
We move on now to the evaluation of the anomaly classifi-

cation capabilities of the K-CDA approach. We additionally
evaluate the three aforementioned ML-based classifiers. To
evaluate and compare the performance and virtues of the
classification models, we consider three standard metrics:
Global Accuracy GA, Recall and Precision. GA indicates
the percentage of correctly classified instances (time bins)
among the total number of instances. Recall Ri is the num-
ber of instances from class i = 0, . . . , 3 correctly classified
(TPi), divided by the number of instances in class i (ni).
Precision Pi is the percentage of instances correctly classi-
fied as belonging to class i among all the instances classified
as belonging to class i, including true and false positives
(FPi). Recall and precision are two widely used performance
metrics in classification. Precision permits to measure the
fidelity of the classification model regarding each particular
class, whereas recall measures the per-class accuracy.

Ri =
TPi

ni

, Pi =
TPi

TPi + FPi

, GA =

M∑

i=1

TPi

n
(1)

Fig. 7 reports the performance of the four compared classi-
fiers in the classification of all the 5-minutes time bins. To
limit biased results, all the evaluations presented use 10-fold
cross-validation. Reported results refer to optimal parame-
ter settings, after thorough testing. According to Fig. 7(a),
MLP, SVM and C4.5 achieve high overall classification accu-
racy, above 90% in the three cases, and with a slightly bet-
ter performance for the MLP model. The K-CDA approach
achieves slightly worse results, but in any case reaches al-
most a 85% of accuracy, quite close to the other models. In
terms of precision and recall, depicted in Figs. 7(b) and 7(c)
respectively, the MLP model outperforms the other classi-
fiers in all the classes, evidencing the nice properties intro-
duced by such a model. As already evidenced in the results
presented in Fig. 6(a), the K-CDA approach performs quite
similarly to the SVM and C4.5 models, and in particular,
shows the same limitations to correctly detect anomalies of
type E2, achieving a recall as low as 55% for this class. The
K-CDA approach also shows limitations to correctly isolate
anomalies of types E1 and E3, showing a precision close to
70% in both cases. Due to page-length limitations we do
not include the confusion matrix for each classifier, but the
main source of under-performance for the K-CDA approach
comes from misclassifying anomalies into another anomaly
class, and not due to completely missing them. All in all,
results clearly suggest that the proposed K-CDA anomaly
detection and classification approach is accurate and com-
parable to other fully supervised approaches, and that it
can diagnose the studied anomalies quite well. As future
work, we shall dig deeper into feature selection approaches
to improve the performance of the approach with the lowest
intensity anomalies of type E2.
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Figure 6: Detection performance. K-CDA performs similarly to fully supervised approaches.
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(b) Precision.

normal type 1 type 2 type 3
0

10

20

30

40

50

60

70

80

90

100

Class (ground truth labels)

R
e
c
a
ll 

(%
)

CAP MLP SVM C4.5

(c) Recall.

Figure 7: Classification Accuracy, Precision, and Recall for normal operation instances and anomalies.

7. CONCLUSIONS
In this paper we have presented K-CDA, a clustering

based approach for detection and classification of anoma-
lies generated by apps, based on the analysis of passively
captured network data. The approach is based on semi-
supervised techniques, which has the main virtue of requir-
ing less labeled data for calibration purposes. This is a
paramount advantage in practical solutions, as labeling data
is a complex, cumbersome and error-prone approach, and
very difficult to follow in operational scenarios. We be-
lieve that ML-based approaches can provide high insights
and visibility for daily network operations, especially in cur-
rent context where traffic complexity keeps growing. Given
the general lack of large-scale ground-truth datasets to test
the performance of systems like ours, we have used an ap-
proach to generate semi-synthetic data, derived from real
traffic traces. We believe this could help the owners of real
data to make such datasets available for the research com-
munity without disclosing any privacy or business sensitive
information.
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