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Abstract—Despite the long literature and assorted list of proposed
systems for performing detection and classification of anomalies in
operational networks, Internet Service Providers (ISPs) are still looking
for effective means to manage the ever-growing number of network traffic
anomalies they face in their daily business. In this paper we address the
problem of automatic network traffic anomaly detection and classification
using Machine Learning (ML) based techniques, for the specific case
of traffic anomalies observed in cellular network measurements. We
devise a simple detection and classification technique based on decision
tress, and compare its performance to that achieved by other supervised
learning classifiers well known in the ML literature (e.g., SVM, neuronal
networks, etc.). The proposed solution is evaluated using synthetically-
generated data from an operational cellular ISP, drawn from real traffic
statistics to resemble the real cellular network traffic. Furthermore, we
compare the achieved performance against other well-known detectors
in the literature (e.g., distribution-based, entropy-based), and propose a
multi-detector approach to increase the overall system performance in a
number of case studies.

Index Terms—Anomaly Detection; Root Cause Analysis; Network
Measurements; Statistical Analysis; Machine Learning; DNS Traffic;
Cellular ISP.

I. INTRODUCTION

During the last decade, a plethora of new, heterogeneous Internet-
services have become highly popular and omnipresent, imposing new
challenges to network operators. The complex provisioning systems
used by these services induce continuous changes that impact both
operators and customers. Indeed, efficient traffic engineering becomes
a moving target for the operator [1], and management of Quality of
Experience (QoE) gets more cumbersome, potentially affecting the
end customer [2]. Furthermore, due to their traffic characteristics,
applications that provide continuous online presence (e.g., messaging
services) might severely impact the signaling plane of the network,
especially in cellular networks [4]. In such a complex scenario, it is
of vital importance to promptly detect and classify the occurrence of
abrupt changes that could result in anomalies for some of the involved
stakeholders.

In this paper we propose a simple yet effective approach to detect
and classify network and traffic anomalies using supervised Machine
Learning (ML) techniques. Supervised ML offers algorithms which
can learn from and make predictions on data, building models from
labeled input data to take data-driven decisions instead of static
ones. ML techniques provide a promising alternative for detecting
and classifying anomalies based on an initially large set of traffic
descriptors or features, specially given the possibility to perform
data-driven feature selection to finally select a more relevant and
powerful set of features for the detection and classification process.
ML has been largely used in the field of automatic network traffic
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classification, and to a lesser extend also applied in the anomaly
detection domain. While studies have shown that a number of
different algorithms are able to achieve potentially high detection
and classification accuracy, most of them have neglected the impacts
of accurate feature selection to improve results and achieve more
compact systems (i.e., systems which rely on less input parameters).
Indeed, using a large set of traffic descriptors as input for a ML-
based system is not always the best choice, as it may negatively
impact classification results. For example, using more descriptors
increments the dimensionality of the problem, introducing sparsity
issues. At the same time, using irrelevant or redundant features may
diminish performance in the practice, by adding noise to the overall
process.

To achieve our goal, we propose a detection and classification
system based on well-known decision trees [5]. A decision tree
is a classification algorithm that classifies instances by repeatedly
partitioning the input space, so as to build a tree whose nodes are
as pure as possible (i.e., they contain instances of a single class).
The literature offers multiple types of ML-based classifiers, covering
a very wide range of approaches and techniques [28]. Many of the
approaches offer “black-box” solutions, for which it becomes very
challenging to understand the reasons of a particular classification
result, and in particular to understand the input features leading to
such a result. Decision trees are therefore a very appealing option;
they are simple yet very fast and effective. Indeed, classification
speed is a paramount asset when thinking in large-scale monitoring
scenarios, and decision trees are well-known for their speed. They
are also very easy to interpret, and directly provide filtering rules. In
addition, decision trees explicitly show the importance of different
features, as the learning algorithm automatically performs feature
selection by choosing the most discriminating features. This is a
paramount advantage as compared to other ML approaches, as
decision trees are more robust to noisy or loosely correlated-to-class
input features. Last but not least, previous work [21] has shown that
decision trees outperform other ML-based standard algorithms for the
sake of traffic classification, thus additionally supporting our decision.
The C4.5 decision tree is the most frequently used algorithm [6], so
we have conceived the proposed system based on such trees.

While the approach we consider is not tied to a specific type of net-
work and can be generalized to any kind of communication system,
results presented in this paper consider the analysis of data captured
in an operational cellular network, and therefore use some features
exclusively available in cellular contexts. Anomalies observed in
a cellular network are normally different from those observed in
typical fixed-line networks [3], given that the type of end-user traffic
is quite different due to the overwhelming usage of smartphone
apps. Given that the types of anomalies we are interested in are
mostly related to issues impacting the end customers of a cellular
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network, we particularly focus on the study of application-specific
anomalies. Such anomalies refer to the occurrence of anomalies
linked to popular applications (e.g., YouTube, Facebook, WhatsApp,
etc.) and/or application providers (e.g., Google, Facebook, Apple
Services, etc.). From our operational experience and our previous
studies [3], application-specific anomalies are particularly visible in
the DNS traffic of a network, as most of current apps and services
distributed by omnipresent Content Delivery Networks (CDNs) ex-
tensively rely on a heavy usage of DNS for content access and
location. As so, abrupt changes in the DNS queries count can be
considered as a symptom of such anomalies [3]. Besides DNS query
counts, our approach relies on the availability of related meta-data,
which can also be observed in the analyzed cellular ISP. These meta-
data may include information related to the end-device (e.g., device
manufacturer, Operative System), the access network (e.g., Radio
Access Technology – RAT, Access Point Name – APN, IP address
of the DNS resolver), and the requested service (e.g., requested Fully
Qualified Domain Name – FQDN).

The remainder of this paper is organized as follows: Sec. II presents
the characterization of the cellular traffic and the generation of
synthetic datasets used for evaluation purposes. Sec. III describes
the proposed anomaly detector and classifier, and briefly overviews
the additional ML-based and statistical-based approaches used in
the rest of the paper. In Sec. IV we discuss the obtained results,
considering both the detection and classification of anomalies. Sec. V
briefly reviews the related work. Finally, Sec. VI concludes this work.
This paper builds on our previous work on statistical detection and
diagnosis of anomalies [22], particularly extending the approach by
using ML-based techniques, not used in [22].

II. ANOMALY MODELING AND DATA GENERATION

We have evaluated different anomaly detectors (C4.5 DT, DAD and
H-EWMA, see Sec. III) for longer than six months in 2014 with DNS
traffic from the operational cellular network of a nationwide European
operator. While the extensive experimentation allowed us to collect
results in a number of paradigmatic case-studies, the number of traffic
anomalies observed in the corresponding period was relatively low,
limiting as such the performance analysis of the proposed approach
exclusively to those few real cases. In principle, one could resort
to test traces obtained in a controlled environment (laboratory) or
by simulations, but these approaches would miss the complexity and
heterogeneity of the real traffic.

To bypass this hurdle, we adopted a methodology based on semi-
synthetic data, derived from real traffic traces as suggested in [11].
Such an approach does not only allow to extensively analyze the
performance of the framework with a large number of synthetic,
yet statistically relevant anomalies, but also permits to protect the
operator’s business sensitive information, as neither real data traces
nor real anomalies are exposed. To illustrate the procedure, next we
explain how to generate semi-synthetic background DNS traffic, as
well as how to replicate some the observed DNS-related anomalies.

In the paper we take as main anomaly detection feature the distribu-
tion of number of devices across DNS query counts, i.e., the counting
of the devices issuing a given number of DNS requests within each
time bin. In fact, perturbations in this distribution indicate that a
device sub-population deviates from the usual DNS traffic patterns,
thus pointing to potential anomalies. For the sake of classifying the
anomalies, we take the distributions of query count across the fields
described in Tab. I.

A. Construction of Semi-synthetic Background Traffic

The procedure for constructing the semi-synthetic dataset is con-
ceived with the objective of maintaining as much as possible the

Field Name Description

Manufacturer Device manufacturer

OS Device operating system

APN Access Point Name

FQDN Fully Qualified Domain Name of remote service

Error Flag Status of the DNS transaction

Table I
FEATURES USED IN THE ANALYSIS.

structural characteristics of the real, normal operation (i.e., anomaly-
free) traffic, while eliminating possible (unknown) anomalies present
in real traces. Exploring real traces, we observed that the traffic yields
some fundamental temporal characteristics. In particular, the traffic
is non-stationary due to time-of-day variations. This effect is not
limited to the number of active devices, but rather applies to the
entire distribution. Distribution variations depend on the change of the
applications and terminals mix, which in turn induce modifications
in the traffic patterns. Furthermore, we found that, besides a strong
24-hours seasonality, the traffic exhibits a weekly pseudo-cycle with
marked differences between working days and weekends/festivities
[7]. Finally, traffic remains pretty similar at the same time of day
across days of the same type.

The first step of the construction procedure consists of manually
labeling and removing possible anomalous events. However, as the
complete ground truth is unknown in real traffic, we cannot com-
pletely rely on individual labeling of alarms. Therefore, we have
to accept that minor anomalies may go undetected if their effect
is comparable with purely random fluctuations. Then, the dataset
is transformed to eliminate possible residual (unknown) anomalies
present in the real traffic, while preserving the above mentioned
structural characteristics. The transformation procedure is described
as follows.

Let consider a real dataset spanning a measurement period of a few
weeks, for a total of m consecutive one-day intervals (e.g., m = 28 in
our case). Each one-day period starts and ends at 4:00 am local time:
this is the time-of-day where the number of active devices reaches its
minimum (considering a single time-zone). Denote by mW and mF

the number of working and festivity (W- and F-) days, respectively,
in the real dataset (e.g., mF = 8 and mW = 20), and by K the
total number of 1-min time bins (K = 28 · 24 · 60 = 40320). For
each device i consider the vector di ≡ {cτ0i (k), k = 1, 2, . . . ,K}
at the minimum timescale (τ0 = 1 minute) across the whole real
trace duration, where each element cτ0i (k) is the list of the DNS
measurements related to device i at time k. For those time bins where
device i is inactive, the corresponding element in di is empty. We now
divide this vector into m blocks, each one corresponding to a single
one-day interval. Each block is classified as W- or F-block based on
the calendar day. At this point we apply a random scrambling within
the W class: each W-block element of di is randomly relocated at the
same time position selected among all W-days. The same scrambling
is applied independently to the F-blocks. In this way we obtain a
new vector d̃i where the position of the blocks has been scrambled,
separately for W- and F-blocks, but the time location and the F/W
intervals have been maintained. Finally, from the set of scrambled
vectors d̃i we can derive a new set of distributions for each time bin
k and timescale τ , for all the considered traffic features.

The dataset obtained in this way retains certain characteristics of
the real dataset, while others are eliminated. The most important
change is that the random scrambling of the individual components
di → d̃i results in the homogenization of the individual daily profiles
— separately for W- and F-days. This eliminates any minor residual
local anomaly that survived the manual labeling by spreading it out
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across all one-day intervals of the same F/W type. In other words,
all W-days in the new dataset share the same (synthetic) aggregate
daily profile. Same applies to F-days. Note however that the synthetic
dataset retains the most important characteristics of the real process.
In the first place, it keeps the time-of-day variations of the number
of active devices. Secondly, the semi-synthetic dataset maintains the
differentiation between the two classes of W- and F- days, although
it eliminates any differentiation within each class (e.g., between
Saturday and Sunday). Thirdly, it keeps the differentiation between
distributions for different time-of-day. The result of the procedure is
an anomaly-free DNS dataset structurally similar to the real trace.

B. Modeling and Generation of Synthetic Anomalies

During six months of experimentation we encountered a few
recurring large-scale DNS traffic anomalies. Investigating these events
we found some common traits and we conceived a procedure for
reproducing them along with their most relevant characteristics. In
particular, we identified two exemplary event types, E1 and E2 from
now. In both the cases, we model an outage of an Internet service
for a specific sub-population of devices, which react by repeatedly
and constantly issuing DNS queries to resolve the requested service
throughout the anomaly. Involved devices are identified by fixing
a specific OS (with its different versions). Moreover, we aim at
modeling the correlation between the selected sub-population and
the unreachable service. Therefore, we separately rank the 2nd-Level
Domain (2LD) of the FQDNs for anomalous and background traffic,
and select the most popular 2LD of the former that is not in the
latter. As a simple example of such types of anomalies, we have
observed events in which Apple devices running a specific version
of iOS lost their persistent connectivity to certain servers providing
the Apple push-notification service (which is the core of the remote
notifications used in virtually every iOS App), resulting in a surge
of DNS requests to locate new servers, and the resulting “scanning”
of the complete IP address space of Apple push-notification service.
Such an event was perceived by the cellular ISP as an internal sort
of DDoS attack, as a large population of their own customer devices
starting “bombarding” the network, starving resources at the access
in some specific regions.

Event E1: This type models the case of a short lived (i.e., hours)
high intensity anomaly (e.g., 10% of devices repeating a request
every few seconds), where all the involved devices are produced by
a single manufacturer and run the same OS. In this case, the number
of involved terminals and the overall number of additional queries is
such to overload the local DNS servers. The latter effect is modeled
by increasing the number of time-out codes in the Error Flag field.

Event E2: This type models a long lasting (i.e., days) low-
intensity anomaly (e.g., 5% of devices repeating requests every few
minutes). Differently from the previous case, the involved terminals
are produced by multiple manufacturers, even if they share the same
OS. Given the low-intensity, we did not introduce a modification in
the distribution of the Error Flag. Note that although E2 type anoma-
lies are of relatively low intensity, their identification is important as,
in our experience, they may lead to problems on the signaling plane.

Tab. II summarizes the characteristics of the two event types and
the actual values used for generating the anomalous dataset in the
experiments discussed next. To illustrate the anomaly generation
procedure, we consider an event of type E1 of duration d = 1h,
starting at t1 = 9 : 00. Starting from t1 at each time bin, D = 10%
of all the active terminals are randomly extracted from the semi-
synthetic background traffic, such that the OS is the selected one and
the manufacturer is always the same. For each involved terminal,
we generate one additional DNS query every 5 seconds, which are

Type E1 E2

Start time t1 9:00 13:00

Duration d 1h 2 days

Involved devices D 10% 5%

Back-off time 5 sec 180 sec

Manufacturer single popular multiple

OS single (with sub-ver) single (with sub-ver)

Error flag +5% timeout —

FQDN top-2LD top-2LD

Table II
ANOMALOUS DNS TRAFFIC FEATURES FOR TYPES E1/E2 .

then added to the semi-synthetic dataset. The corresponding FQDN
is randomly chosen among the domains in the 2LD identified as
explained above. Finally, the Error Flag is changed to time-out
in 5% of the overall DNS queries, so as to model the resolver
overload. The last step consists of mangling both the anomalous
and the background traffic. The procedure for generating type E2

is analogous, but differs in the selection of the anomalous terminals
(same OS, but not necessarily same manufacturer). The Error Flag is
unaffected in this case.

III. ANOMALY DETECTION AND CLASSIFICATION TECHNIQUES

In this section we describe the proposed anomaly detection and
classification approach based on decision trees, focusing on the
specific features used as input. Besides this decision tree based
approach, we consider two statistical-based detection approaches
in our study: Distribution-based Anomaly Detection (DAD) and
Entropy-based Anomaly Detection, using an Exponentially Weighted
Moving Average change detector (H-EMMA). In addition, we con-
sider five standard supervised ML-based approaches previously used
in the literature for classification comparison purposes: Multi-Layer
Perceptron (MLP) Neural Networks, Naive Bayes (NB), Random
Forest (RF), Support Vector Machines (SVM), and Locally-Weighted-
based Learning (LWL). We briefly describe all these approaches next.

A. DT - Decision Tree-based Detection and Classification

DTs [5], [6] define a classification technique based on a tree
graph, where inner nodes correspond to a condition on a feature
and leaves are the outcome (i.e., the class). A DT represents a very
popular classification algorithm due to its simplicity (it can be easily
converted into a rule-based classification system) and readability (it
can be graphically represented). We shall see these advantages in the
evaluations. The training follows a top-down greedy algorithm that
works by iteratively splitting the nodes, using either the Gini Index or
the Information Gain as optimization metric. For the results presented
in our approach we employed the popular C4.5 implementation,
which uses the latter as metric for training.

The proposed approach uses as input a set of features which are
derived from the DNS measurements and the additional data indicated
in Tab. I. Tab. III describes the specific set of 36 features, which are
computed for every 10-minutes long time bin. The set includes the
number of observed DNS requests, as well as multiple percentiles of
fields such as associated APN, device OS and manufacturer, requested
FQDN and number of DNS error messages. We also take as input
the average values of these fields, as well as their entropy, the latter
reflecting the dispersion of the observed samples in the corresponding
time bin. The training of the decision tree-based classifier is done on
top of synthetically generated datasets, which are by default labeled
datasets. In the evaluations we describe the specific dataset used in
this paper.
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Field Feature Description

DNS query querycnt total num of DNS requests

APN
apn h H(APN)

apn avg APN
apn p{99,75,50,25,05} percentiles

Error flag
error code h H(Error flag)

error code avg Error flag
error code p{99,75,50,25,05} percentiles

Manufacturer
manufacturer h H(Manufacturer)

manufacturer avg Manufacturer
manufacturer p{99,75,50,25,05} percentiles

OS
os h H(OS)

os avg OS
os p{99,75,50,25,05} percentiles

FQDN
req fqdn h H(FQDN)

req fqdn avg FQDN
req fqdn p{99,75,50,25,05} percentiles

Table III
INPUT FEATURES FOR THE C4.5 DT-BASED DETECTOR/CLASSIFIER.

Before moving on to the description of the remaining algorithms,
we make a note on the relevance and challenges associated to the
selection of features. It is clear that the selection of features used
by any detection and classification system plays a major role in
its performance: indeed, even the best algorithm would completely
fail if the input features for classification are loosely correlated to
the underlying classes. The set of features presented in Tab. III, as
well as the base measurements described in Tab. I are derived from
expert knowledge, based on the specific types of anomalies under
study. While in section IV we evaluate the impact of supervised
feature selection to choose the best features for the DT classifier,
the question on how to select a set of proper input features in
a completely unsupervised manner remains. Unsupervised feature
selection is highly challenging, as no ground-truth is available for the
task, and even if different partial approaches exist, it still represents
an open research problem.

Techniques such as Principal Components Analysis (PCA) have
been used in the past to blindly obtain better input features, but PCA
has many drawbacks and technical limitations (e.g., it assumes linear
manifolds where data lies), and is not particularly appealing in the
practice, as obtained features are transformations of the base ones. In
[29] we have explored the possibility of using clustering techniques to
blindly select a set of proper input features for the sake of network
intrusion detection. In particular, given a initial and generic set of
features defining the so-called feature space, we have applied Sub-
Space clustering techniques to identify the best sub-spaces where data
can be correctly analyzed. In the future we plan to apply a similar
direction in the particular problem of this paper.

B. DAD - Distribution-based Anomaly Detection

Distribution-based detectors generally consider the temporal anal-
ysis of the empirical probability distribution of certain features,
using some notion of similarity between the observed distribution
and a set of (anomaly-free) distributions which describe the normal-
operation behavior, i.e., the baseline. In this paper we rely on a DAD
algorithm we have conceived and introduced in [10], which employs a
powerful heuristic approach to build the baseline, taking into account
the structural characteristics of the analyzed traffic such as time of
day variations, presence of pseudo-cyclic weekly patterns, and long
term variations. The comparison between the analyzed distribution
and the baseline is performed using a symmetric and normalized
version of the well-known Kullback-Leibler divergence. The anomaly
detection test checks if the average distance among distributions

exceeds an upper bound, which is periodically updated based on past
observations.

C. H-EWMA - Entropy-based Anomaly Detection

A particularly popular approach for detecting anomalies in network
traffic is the one represented by entropy-based analysis [8], [9]. The
entropy of a feature captures in a single number the dispersion of the
corresponding probability distribution, thus it is highly appealing for
the analysis. However, such a compression necessarily looses relevant
information about the higher distribution moments of the analyzed
feature, limiting the detectability of some anomalies. Entropy-based
detectors work by flagging abrupt changes in the time series of
the empirical entropy of the analyzed features. We consider the
well-known, yet effective, Exponentially Weighted Moving Average
(EWMA) algorithm for detecting such changes.

D. RF - Random Forrest-based Classification

RF is an ensemble technique based on multiple instances of
decision trees, each one based on a different part of the training set,
randomly selected. These instances are called bootstrapped samples.
The final outcome is generally decided by majority voting among all
the bootstrapped samples.

E. SVM - Support Vector Machines Classification

SVMs are non-probabilistic binary classifiers [28]. SVM is con-
sidered one of the most powerful supervised classification algorithm.
It works by representing each feature vector in a multidimensional
space and trying to find a linear separation (i.e., an hyperplane)
for the classes. In some cases, however, a linear separation of the
space is not possible, hence it uses the so-called kernel trick, which
implicitly increases the dimensionality of the space, resulting in an
easier separation in a much higher dimensional space, due to the
increased sparsity.

F. NB - Naı̈ve Bayes Classification

NB is a very simple classifier based on Bayesian statistics [28].
Despite its simplicity, it is widely used as it is very efficient in a
number of scenarios, especially in high-dimensional datasets. It works
by assuming that features are mutually independent, which is not
true in most cases, hence the adjective naı̈ve. This assumption allows
for an easy calculation of the class-conditional probabilities, using
maximum likelihood estimation.

G. LWL - Locally-Weighted-based Learning Classification

LWL is another Bayes classifier [28]. It overcomes the limitations
of NB, i.e., the assumption of feature independence, by learning local
models. LWL constructs a new Bayes model using a weighted set of
training instances at classification time.

H. MLP - Multi-Layer Perceptron Classification

MLP is an artificial neural network composed of multiple layers of
neurons, each of them generally represented by a non-linear function
[28]. The layers are fully connected in a feed-forward scheme. Each
neuron employs an activation function that maps the weighted inputs
to the output that is passed to the following layer. The weights,
originally set to random values, are iteratively adjusted during the
training phase.
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IV. ANOMALY DETECTION AND CLASSIFICATION - EVALUATION

In this section we evaluate the proposed C4.5 DT approach, firstly
by comparing its detection performance against that achieved by
the two statistical-based detection approaches (DAD and H-EMMA),
and then by comparing its classification performance against the rest
of the ML-based approaches. We additionally evaluate the impact
on classification performance of performing feature selection on the
inputs used by the C4.5 DT approach.

For evaluation purposes and following the data generation approach
described in Sec. II, we construct a fully labeled dataset consisting
of a full month of synthetically generated cellular network DNS
measurements, reported with a time granularity of 10 minutes. The
dataset contains normal operation traffic, with multiple instances of
the aforementioned E1 and E2 anomalies.

A. Detection Performance: C4.5 DT vs. DAD and H-EWMA

Let us first get an initial picture of the detection capabilities of
the C4.5 DT approach, by injecting only two instances of each type
of anomaly on top of the normal operation traffic. The training and
evaluation of the C4.5 DT is performed by 10-fold cross validation:
at each evaluation round, one anomaly of each type is injected in
the training subset, and one anomaly of each type is injected in the
validation subset. Detection performance is evaluated in a time bin
basis and not in an event basis: this means that there are 6 anomalous
time slots for the type E1 anomaly and 6×24×2 = 288 for the type
E2 one that need to be correctly detected by the algorithms, and not
a single instance per anomaly type. We follow such a direction as
we are not only interested in detecting the occurrence event, but also
its full span/duration. We additionally evaluate the DAD and the H-
EWMA detectors, using the distribution of number of devices across
DNS query counts as monitoring feature. Note that both detectors
are meant to be applied in single features, but could in principle be
applied to multiple features in parallel (e.g., see Fig. 2). The purpose
of this simple evaluation is to show that the achieved detection
performance is similar, or even better, than that obtained by more
traditional, statistical-based approaches.

Fig. 1 depicts the Receiver Operating Characteristic (ROC) curves
obtained for (a) the E1 type anomaly and (b) the E2 type anomaly
using the 3 detectors. The C4.5 DT achieves almost perfect detection
performance in both cases, even slightly outperforming the DAD
detector for the E1 anomaly. The H-EWMA detector also achieves
perfect detection for the E1 anomaly, but completely fails to detect
all the instances of the E2 one, due to its low intensity.

Recall that the C4.5 DT uses a much broader set of inputs for
the analysis, whereas in this evaluation, only one single feature is
analyzed by both DAD and H-EWMA. To make a fairer comparison,
Fig. 2 presents the detection results achieved by DAD and H-EWMA
on all the additionally impacted features (FQDN, error code, OS
and manufacturer for E1 and both OS and FQDN for E2). Drawn
observations remain the same. As a first conclusion, we can see that
the C4.5 DT approach offers a detection performance comparable
or even slightly better to that achieved by DAD in both anomaly
types. Being DAD a very powerful detector (i.e., it evaluates the
complete empirical distribution of the input features), results are
highly relevant.

B. Classification Performance vs ML Approaches

We move on now to the evaluation of the classification capabilities
of the C4.5 DT approach. In this section we only consider the
ML-based approaches described in Sec. III, as the statistical-based
detectors are not meant for classification. Still, in order to improve
the classification performance of the C4.5 DT approach, we consider
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(a) Anomaly type E1. (b) Anomaly type E2.

Figure 1. ROC curves for the detection of anomalies type E1 and E2.

the output of the statistical anomaly detectors as additional input
features for the ML-based classifiers. This is a common and powerful
approach followed in the ML domain, and permits to integrate the
valuable information produced by both detectors into the classifica-
tion process, resulting in a sort of multi-way classification approach.
We therefore include 12 additional features to the synthetic dataset:
the distance metric obtained by the DAD approach and the output
of the EMWA algorithm, for all the 6 fields depicted in Tab. III (the
names of these features follow the notation field_name_adtool
for the DAD approach and field_name_ewma for the H-EWMA
one). To perform a better evaluation, we extend the labeled dataset
by introducing multiple instances of E1 and E2 anomalies but with
a different fraction of the device population involved in the anomaly,
going from 0.1% to 20%. We additionally introduce a third class
of anomalies type E3 which models a scenario in which all the
customers of certain virtual operators (reflected by specific APNs) are
affected by service outages, responding with a surge in the number
of DNS queries. We take two different intensities for this anomaly
type, considering a population of 12% and 3% respectively (size
of virtual-operator customer populations, as observed from our real
measurements). The duration of E3 anomalies is 1 hour. In total we
include 16 different variations of anomalies, 7 of type E1 , 7 of type
E2 and 2 of type E3. Each time bin is assigned a class, either normal
- label 0, or anomalous - label 1, 2 or 3 for the three anomaly types
respectively.

We use the well-known Weka Machine-Learning software tool
[23] to calibrate the six ML-based algorithms and to perform the
evaluations. Reported results refer to optimal parameter settings, after
thorough testing. We address the interested reader to the survey [28]
and to the Weka documentation [23] for additional information on
the different configuration parameters of each algorithm.

To evaluate and compare the performance and virtues of the classi-
fication models, we consider three standard metrics: Global Accuracy
GA, Recall and Precision. GA indicates the percentage of correctly
classified instances (time bins) among the total number of instances.
Recall Ri is the number of instances from class i = 0, . . . , 3 correctly
classified (TPi), divided by the number of instances in class i (ni).
Precision Pi is the percentage of instances correctly classified as
belonging to class i among all the instances classified as belonging to
class i, including true and false positives (FPi). Recall and precision
are two widely used performance metrics in classification. Precision
permits to measure the fidelity of the classification model regarding
each particular class, whereas recall measures the per-class accuracy.

Ri =
TPi
ni

, Pi =
TPi

TPi + FPi
, GA =

M∑
i=1

TPi

n
(1)

1) Results and Discussion: Fig. 3 reports the performance of the
six compared classifiers in the classification of all the 10-minutes
time bins. All the evaluations presented use 10-fold cross-validation,
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(a) Anomaly type E1 - DAD. (b) Anomaly type E2 - DAD. (c) Anomaly type E1 - H-EWMA. (d) Anomaly type E2 - H-EWMA.

Figure 2. ROC curves for the detection of anomalies type E1 and E2 for the DAD and H-EWMA anomaly detectors, considering all the impacted features.
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(b) Precision.
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(c) Recall.

Figure 3. Classification Accuracy, Precision, and Recall for normal operation instances and different anomaly-types’ events. The performance of C4.5 DT is
almost perfect for normal traffic and anomalies of type 1 and 2, but quality significantly drops for the anomaly type 3.
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Figure 4. Pruned C4.5 DT model for anomaly diagnosis. C4.5 achieves very high global accuracy, as well as very high precision and recall for normal traffic
and type 1, type 2 anomalies. However, this tree is not capable of properly tracking type 3 anomalies. This issue can be solved by performing pre-filtering
on the input features, by feature selection techniques.

which means that we train and test the models for 10 different
training/testing combination sets, to avoid biased results. To be fare
in the comparisons, parameters are set manually for all the models,
performing an extensive trial-and-error testing phase to obtain the
best results. In addition, for each classifier we run each 10-fold

cross validation experiment for 100 consecutive times, using different
random splits of the data, an compute the resulting Confidence
Intervals – CIs (with a 95% confidence level). Fig. 3(a) depicts
the global accuracy obtained by the six approaches. All the models
provide very high accuracy, above 90%. The C4.5 decision tree model
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(a) Per-class ROC curves for the C4.5 tree. (b) Improving accuracy by feature selection.

Figure 5. Performance of the C4.5 anomaly classifier, and classification
enhancement through feature selection.

achieves the same performance as the RF, but the latter uses 20
parallel C4.5 decision trees instead of a single one. SVM, MLP and
NB achieve slightly worse performance in terms of accuracy, which
is a-priori surprising, as at least SVMs and MLPs have proved to
be very good classifiers in previous work. Understanding this under-
performance is part of our future work. Regarding CIs, even if the
number of anomalous slots for each type of anomaly is rather small,
there are no particular bias for most of the classifiers. The MLP
classifier shows a slightly higher variance in the results, which might
suggest a less robust performance in terms of over-fitting. This comes
directly from the MLP structure used in the tests, which has 10
hidden neurons in the intermediate layer, making the tunning more
cumbersome and prone to higher bias.

Regarding precision and recall depicted in Figs. 3(b) and 3(c),
we can observe that all the approaches systematically fail to properly
track the type 3 anomalies. C4.5 achieves high precision and recall for
normal and type 1, type 2 anomalies, but also fails to properly isolate
type 3 events, resulting in a very low recall. While the problem of
unbalanced classes is for sure an issue partially masking these results,
the particularities of type 3 anomalies require additional efforts to
properly track them. Indeed, as also shown in Fig. 5(a), while the
per-class ROC curves obtained for the first 3 classes (0, 1, and 2) by
C4.5 are almost perfect (TPR = 100% for a FPR below 1%), the ROC
curve for the type 3 events shows poor results. As we see next, we
can greatly improved the performance of C4.5 DT for classification
of type 3 events by performing features filtering and selection.

Finally, Fig. 4 depicts the obtained C4.5 DT model. As we
claimed before, decision tree models provide great insights about the
process leading to a specific classification result. Using the model, a
network operator can identify those features leading to specific type
of anomaly, and better infer on their nature. Features at the higher
levels of the tree have more distinguishing power and account for
more population size than lower level features. In this model, the
root node is the output of the DAD detector on the distribution of
DNS requests, showing the paramount role and information provided
by such feature. This was in fact one of the main reasons for including
the outputs of the DAD and H-EWMA detectors as inputs to the C4.5
DT model. Note also the relevance of the FQDN-related features,
which appears in the classification of anomalies of type E1 and E2.
Note that paths from the root node to leaves representing different
anomaly types can be directly expressed as logical rules, which can be
ultimately integrated into any kind of rule-based monitoring system.

2) Improving C4.5 DT Performance by Feature Selection: As we
said before, using an extensive list of traffic features as input is
not always the best strategy, as it may negatively impact classifi-
cation results. Using more features increments the dimensionality of
the feature space, normally introducing undesirable effects such as
sparsity. At the same time, using irrelevant or redundant features
may diminish performance in the practice. We show next that by
carefully addressing the pre-filtering of input features by standard
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Figure 6. OOS test performance for the C4.5 anomaly detector. The detector
is trained with instances of anomaly types E1, E2 and E3, and tested on
anomaly of type E4, not available in the training set.

feature selection techniques, we can partially solve the classification
problem of the C4-5 DT model, related to type 3 anomalies.

There are different search strategies and evaluation criteria to
construct a sub-set of traffic features. Regarding search strategies, the
idea is to test different sub-sets of features, studying local changes in
the particular evaluation criterion when adding or removing features.
The evaluation criterion permits to test the goodness of a particular
sub-set. In this paper we apply a widely used evaluation criterion to
construct a reduced sub-set of features: correlation-based evaluation.
This approach basically selects sub-sets of features that are poorly
correlated among each other, but highly correlated to the classes
of traffic. As search strategy, we use Best-First (BF) search; BF is
similar to a standard greedy exploration, but it has the ability to do
backtracking, i.e., it basically keeps the previously evaluated sub-sets
so as to avoid local maximum/minimum results when there is no local
improvement.

We now evaluate the impact of feature selection on the performance
of the C4.5 DT model. By running the proposed technique, we
end up with a greatly reduced set of features, going from the
initial 48 features to only 4. The resulting set is composed of
the following features: querycnt adtool, apn avg, req fqdn p25, and
req fqdn adtool. Interestingly, these features have a high correlation
to the type E3 anomaly characteristics, which are directly linked to
APN and DNS query counts. Also, the relevance of these features is
partially shown by the original tree in Fig. 4, which reinforces the
advantages of the self-feature-selection achieved during the training
of the DT. To conclude, Fig. 5(b) shows the per-class accuracy
obtained by the C4.5 DT model for both input features sets (i.e.,
the full set of features, and the pruned, 4 features set). While the
performance obtained in the classification of type E1 anomalies is
slightly worse when performing feature selection, there is a great
improvement in the detection performance for the type E3 anomalies,
partially compensating the initial problems of the C4.5 DT model.

3) Out-of-Sample Performance Evaluation: Even if all the evalu-
ations presented in this paper use 10-fold cross validation to reduce
the bias introduced by potential model over-fitting, we performed
an out-of-sample (OOS) test to verify the usability of the DT-based
approach in a more general scenario. In an OOS test, we use the
DT trained with the set of anomalies E1, E2 and E3 to detect a
new anomaly type E4 not available in the training set. In the ideal
case, the anomaly type E4 should be a real anomaly observed in
the cellular network, to verify the performance of the detector in
the real environment. However, we re-sort once again to synthetic
data generation, to protect the ISP privacy. The anomaly of type E4

belongs to the same class of anomalies as E1, E2 and E3, meaning
that devices increase the number of DNS queries, but in this case
they do it as part of a short-term (30’) moderate flash-crowd, and
thus do not generate a marked deviation in the distribution of queries
per device. In fact, the numbers of queries is slightly increased by
only 2% w.r.t. those issued by the most active (i.e., generating the
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most of the queries) devices at peak load time. Given the flash-crowd
nature, there is a particularly visible variation in the features related
to the FQDN pointing to the requested content. As we did before,
we take a different fraction of the device population involved in this
new anomaly, going from 0.1% to 20%. Fig. 6 depicts the ROC
curve obtained in this test. While detection performance is impacted
as compared to the results obtained with the DT presented in Fig. 4
for the other anomaly types, the detector can still correctly recognize
more than 80% of the anomalous slots of type E4 without false
positives. This results point to the generalization of the proposed
approach for detecting non-observed anomalies of the same class as
the one analyzed in this paper. A wider generalization of the approach
is out of scope for this paper.

V. RELATED WORK

There has been considerable amount of research about anomaly
detection in network traffic. A large set of papers apply con-
cepts and techniques imported from fields like Neural Networks,
Self-Organizing Maps [12], Genetic Algorithms [13], Fuzzy Logic
[14], Data Mining [15], Machine Learning [16], etc. Focusing on
statistical-based methods, most work rely on the analysis of scalar
time-series, typically of total volume. They adopt various techniques
like Discrete Wavelet Transform [17] CUSUM [18] and others.

It is commonly accepted that information-theoretic concepts, and
in particular entropy measures, are well-suited for anomaly detection
[8], [9]. Distribution-based approaches such as [10] are intrinsically
more powerful, as they look at the entire distribution, rather than
only at some specific mode or aggregation. The cost is of course a
larger amount of data to be processed, and higher complexity of the
monitoring platform.

Finally, regarding ML-based approaches for classifying anomalies,
the field of automatic traffic analysis and classification trough ML
techniques has been extensively studied during the last half-decade.
A standard non-exhaustive list of supervised ML-based approaches
includes the use of Bayesian classifiers [19], linear discriminant anal-
ysis and k-nearest-neighbors [20], decision trees and feature selection
techniques [21], and support vector machines [24]. Unsupervised
and semi-supervised learning techniques have also been used before
for traffic analysis and classification, including the use of k-means,
DBSCAN, and AutoClass clustering [25], sub-space clustering tech-
niques [27], and a combination of k-means and maximum-likelihood
clusters labeling [26]. We refer the interested reader to [28] for a
detailed survey on the different ML techniques applied to automatic
traffic classification.

VI. CONCLUSIONS

In this paper we have presented a ML-based approach for detection
and classification of large scale Internet anomalies based on the
analysis of passively captured network data. The approach is based
on popular C4.5 decision tress, offering a very powerful and simple
to understand and to track technique to both detect and classify
anomalies. We believe that such an approach can provide high in-
sights and visibility for daily network operations, specially in current
context where traffic complexity keeps growing. Given the general
lack of large-scale ground-truth datasets to test the performance
of systems like ours, we developed an approach to generate semi-
synthetic data, derived from real traffic traces. We believe that this is
also a main contribution of our work, as it would help the owners of
real data to make such datasets available for the research community
without disclosing any privacy or business sensitive information. By
relying on Machine Learning techniques, we have shown how to
classify the detected anomalies in an automatic fashion. In particular,

we investigated a number of supervised classification techniques
and the effects of feature selection on classification performance,
showing how the C4.5 DT-based approach outperforms the rest.
Even more, we compared the detection performance of this approach
against other well-known detectors in the literature (e.g., distribution-
based, entropy-based), and proposed a multi-detector approach to
increase the overall classification performance in a number of case
studies. Based on suggestions from the expert reviewers, we are now
exploring the possibility of constructing better ML-based models for
our problem, relying on traditional model selection strategies and
testing different selection criteria.
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