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Abstract—Internet access through cellular networks is rapidly
growing, driven by the great success of the mobile apps paradigm
and the overwhelming popularity of social-related multimedia
services such as YouTube, Facebook, or even WhatsApp. Under-
standing the functioning, performance and traffic generated by
these applications is paramount for ISPs, especially for cellular
operators, who must manage the huge surge of volume and
number of users with the constraints and challenges of cellular
networks. In this paper we study important networking aspects
of three popular applications in cellular networks: YouTube,
Facebook and WhatsApp. Our evaluations span the Content
Delivery Networks (CDNs) hosting these services, their traffic
characteristics, and their performance. The analysis is performed
on top of real cellular network traffic monitored at the na-
tionwide cellular network of a major European ISP. Due to
privacy issues and given the huge amount of data generated
by these applications as well as the large number of monitored
customers, the analysis has been done in an online fashion,
using a customized Big Data Analytics (BDA) platform called
DBStream. We overview DBStream and discuss other potential
solutions currently available for traffic monitoring and analysis
of big networking data. To the best of our knowledge, this is the
first paper providing a complete analysis of popular services in
cellular networks, using BDA platforms.

Keywords—Content Delivery Networks; Cellular Networks;
Traffic Measurements; Data Stream Warehousing; Big Data; DB-
Stream.

I. INTRODUCTION

A big share of today’s Internet ecosystem is shaped by
the success and influence of the most popular mobile apps,
covering an assorted list of services (e.g., video and audio
streaming, social networking, on-line gaming, etc.). Social-
related multimedia services such as YouTube, Facebook, and
WhatsApp make part of such highly popular services which
can be accessed by mobile apps in cellular networks. YouTube
is doubtless the most prevailing video streaming service today
in terms of users, and more than half of YouTube views come
from mobile devices1, heavily loading the access of cellular
networks. Online Social Networks such as Facebook and social
sharing messaging apps such as WhatsApp are also becoming
a growing headache for ISPs, as they keep on growing in terms
of users everyday (1.5 billion users for Facebook and almost 1
billion for WhatsApp as of November 2015). We identify two
main challenges for cellular ISPs in this fast evolving context:

1http://youtube.com/yt/press/statistics.html

firstly, there are only a bunch of studies analyzing the function-
ing and behavior of these services when considering cellular
traffic, which hinders a correct understanding of paramount
issues such as traffic and usage patterns, content location,
addressing dynamics, etc. Such information is paramount for
cellular IPSs, to better adapt and manage their own networks,
but also to have means to analyze and track the evolution of
these popular services. Secondly, there is a lack of network
traffic monitoring and analysis systems capable of processing
big amounts of packet- and flow-based data in near real time,
which makes the tracking and monitoring of applications as
the ones we analyze in this paper a cumbersome and daunting
tasks for network operators. The recent surge of Big Data
Analytics (BDA) platforms opens the door to novel solutions
in this direction, but their application to the network traffic
monitoring and analysis domain still remains on an early stage.

In this paper we study three massive applications in
cellular networks (YouTube, Facebook and WhatsApp) using
DBStream, a BDA platform especially tailored for network
traffic monitoring and analysis tasks. As we said before,
we specifically address these three applications due to their
overwhelming popularity and massive consumption in cellular
networks today. Our study focuses on three main aspects of
these popular and omnipresent services: (i) the characterization
of their hosting infrastructures, (ii) the analysis of the traffic,
and (iii) the dynamics of the content delivery. The study is
based on an extensive analysis of network traffic observed at
the core of an operational European cellular network. This line
of research has been originally started by the work of Ricciato
on traffic monitoring and analysis in cellular networks [1].

Key Findings and Contributions of the Study

The main findings of our study are as follows:

(1) While YouTube’s and Facebook’s content is hosted in
multiple geographical locations and it is provisioned through
highly dynamic addressing mechanisms, WhatsApp hosting
infrastructure is fully centralized at cloud servers exclusively
located in the US, independently of the geographical location
of the users. Such a geographical footprint makes users
traffic to be hosted in countries other than their local ones,
potentially raising concerns about privacy or legal jurisdiction.

(2) The highly dynamic and distributed content delivery
mechanisms used by Facebook are becoming more spread in



terms of hosting locations and hosting organizations, which
might have a direct impact on the transport costs faced by the
ISP providing the Internet access.

(3) The wide-spread usage of caching in cellular networks
and the deployment of Content Delivery Network (CDN)
servers at the edge of the ISPs provides high benefits in terms
of delay to the contents as well as downlink throughput,
specifically for the case of YouTube traffic.

(4) While WhatsApp is mainly used as a text-messaging
service in terms of transmitted flows (more than 93%), video-
sharing accounts for about 36% of the exchanged volume
in uplink and downlink, and photo-sharing/audio-messaging
for about 38%. Such a usage of WhatsApp suggests that
the application is not only taking over the traditional SMS
service of cellular network providers, but it is also heavily
loading the access network, particularly in the uplink direction.

(5) Despite the complexity of the underlying hosting
infrastructures, traffic volumes and flows in the three
services follow a very predictable time-of-day pattern,
enabling potential scheduling mechanisms and dynamic traffic
engineering policies to optimize the resources of the access
network for such massive applications.

Besides these main findings, our paper provides an addi-
tional contribution in terms of BDA platforms for network
traffic monitoring and analysis: DBStream. DBStream is a
flexible and scalable Data Stream Warehouse (DSW) [2]
system tailored to network monitoring applications. DBStream
is a repository system capable of ingesting data streams coming
from a wide variety of sources and performing complex
continuous analysis, aggregation and filtering jobs on them.
DBStream can store tens of terabytes of heterogeneous data,
and allows both real-time queries on recent data as well as
deep analysis of historical data. We have made DBStream open
source2 for this paper, which we expect would be highly useful
for the network management community in the years to come.

The remainder of the paper is organized as follows: Sec. II
presents an overview on the previous papers on massive
Internet services characterization, as well as BDA platforms for
large-scale data analytics, and in particular targeting network
traffic monitoring and analysis. Sec. III overviews DBStream,
describing its design and implementation details. Sec. IV
describes the analyzed datasets and the methodologies we
used in our study. In Sec. V we analyze the content delivery
infrastructures of the three services. Sec. VI reports on the
characterization of the generated traffic flows, whereas Sec. VII
focuses on the content addressing, distribution dynamics and
performance. Discussion of the obtained results and their prac-
tical implications are presented in Sec. VIII. Finally, Sec. IX
concludes this paper.

II. RELATED WORK

We structure the overview on the related work in two
different subsections; the former focused on the study and
characterization of popular, Internet-scale services and the
traffic hosted by the top content Internet providers; the latter
reviewing current technologies available for big data analytics,

2DBStream @GitHub, https://github.com/arbaer/dbstream/

including their application to network traffic monitoring and
analysis.

A. Internet Services and Traffic Characterization

The study and characterization of the Internet traffic hosted
and delivered by the top content providers has gained important
momentum in the last few years [3]–[6]. In [3], authors
show that most of today’s inter-domain traffic flows directly
between large content providers, CDNs, and the end-users,
and that more than 30% of the inter-domain traffic volume
is delivered by a small number of content providers and
hosting organizations. Several studies have focused on CDN
architectures and CDN performance [5], [6]. In particular, [5]
focuses on user-content latency analysis at the Google CDN,
and [6] provides a comprehensive study of the Akamai CDN
architecture.

The overwhelming popularity of YouTube in the last few
years has attracted the interest of the research community to
shed light on its functioning [5], [7]–[10], covering multiple
different aspects of YouTube. Some of these works include
traffic and usage characteristics [7], [9], content delivery
and CDN server selection policies [5], [8], and QoE-based
monitoring [10]. The growing usage of YouTube in mobile
devices has recently motivated a surge of papers focusing on
the analysis of YouTube in cellular networks [11]–[14]. These
papers focus mainly on the characteristics of the YouTube
traffic as compared to other types of traffic in cellular networks,
including the analysis of YouTube content cacheability in
mobile contexts. Our study focuses on the analysis of the
YouTube performance in cellular networks from an end-user
perspective, considering video flows download throughput and
simplified QoE metrics.

When it comes to OSNs such as Facebook, there has been
a large number of papers in the last few years [15]–[20].
Authors in [15] study the power-law and scale-free properties
of the interconnection graphs of Flickr, YouTube, LiveJournal,
and Orkut, using application-level crawled datasets. In [16],
authors present a study on the privacy characteristics of Face-
book. Some papers [17], [18] study the new Google+ OSN,
particularly in terms of popularity of the OSN, as well as the
evolution of connectivity and activity among users. Authors
in [19], [20] focus on the temporal dynamics of OSNs in
terms of user-interconnections and visited links, using again
public crawled data from popular OSNs such as Facebook,
Twitter, as well as a large Chinese OSN. All these papers
rely on crawled web-data and do not take into account the
traffic and networking aspects of OSNs. In [21] we have started
the analysis of the network-side characteristics of large OSNs
such as Facebook, particularly focusing on the study of the
interplays among the multiple CDNs and domains hosting and
delivering the content. In this paper we take a step further, by
focusing on the temporal dynamics of the traffic delivery and
the traffic flow characteristics.

WhatsApp is a relatively new service, and its study has
been so far quite limited. Some recent papers have partially
addressed the characterization of its traffic [22], [23], but
using very limited datasets (i.e., no more than 50 devices)
and considering an energy-consumption perspective. We have
been recently working on the analysis of WhatsApp through



large scale network measurements [24], [25], considering in
particular the performance of the service, both in terms of
network throughput and quality as perceived by the end
users. In [25] we studied the Quality of Experience (QoE)
requirements for WhatsApp, reporting the results obtained
from subjective QoE lab tests. In this paper we do not focus
on the performance of WhatsApp but on its traffic and hosting
infrastructure, extending the initial results obtained in [24].

B. Big Data Analysis Frameworks

The introduction of Big Data processing led to a new era
in the design and development of large-scale data processing
systems [26]. This new breed of tools and platforms are mostly
dissimilar, have different requirements, and are conceived to
be used in specific situations for specific needs. Each Big
Data practitioner is forced to muddle through the wide range
of options available, and Network Traffic Monitoring and
Analysis (NTMA) is not an exception. A basic yet complete
taxonomy of Big Data Analysis Frameworks includes tradi-
tional Database Management Systems (DBMS) and extended
Data Stream Management Systems (DSMSs), noSQL systems
(e.g., all the MapReduce-based systems), and Graph-oriented
systems. While the majority of these systems target the offline
analysis of static data, some proposal consider the problem of
analyzing data coming in the form of online streams. DSMSs
such as Gigascope [27] and Borealis [28] support continuous
online processing, but they cannot run offline analytics over
static data. The Data Stream Warehousing (DSW) paradigm
provides the means to handle both types of online and offline
processing requirements within a single system. DataCell and
DataDepot are examples of this paradigm [2]. NoSQL systems
such as e.g. MapReduce [29] have also rapidly evolved,
supporting the analysis of unstructured data. Apache Hadoop
[30] and Spark [31] are very popular implementations of
MapReduce systems. These are based on offline processing
rather than stream processing. There has been some promising
recent work on enabling real-time analytics in NoSQL systems,
such as Spark Streaming [32], Indoop [33], Muppet [34] and
SCALLA [35], but these remains unexploited in the NTMA
domain. The offer of solutions available is overwhelming;
more examples include Storm, Samza, Flink (NoSQL); Hawq,
Hive, Greenplum (SQL-oriented); Giraph, GraphLab, Pregel
(graph-oriented), as well as well known DBMSs commercial
solutions such as Teradata, Dataupia, Vertica and Oracle Exa-
data (just to name a few of them).

The application of Big Data Analysis Frameworks for
NTMA tasks requires certain system capabilities: i) scalability:
the framework must offer, possibly inexpensively, storage and
processing capabilities to scale with huge amounts of data
generated by in-network traffic monitors and collectors. ii)
Real-time processing: the system must be able to ingest and
process data in real-time fashion. iii) Historical data process-
ing: the system must enable the analysis of historical data.
iv) Traffic data analysis tools: embedding libraries or plugins
specifically tailored to analyze traffic data. In the following
we present the main categories in which currently available
data analysis technologies can be classified. For each of them,
we highlight pros and cons, and explain why none of them
fits for NTMA. Traditional SQL-like databases are inadequate
for the continuous real-time analysis of data. As we men-
tioned before, Data Stream Warehouses have been introduced

to extend traditional database systems with continuous data
ingest and processing. These technologies leverage arbitrary
SQL framework to perform rolling data analysis, i.e., they
periodically import and process batches of data arriving at the
system. In some cases, these technologies have been proven to
be able to outperform – in terms of processing speed – new
Big Data technologies based on MapReduce [36]. More recent
solutions in this direction include ENTRADA [37], a Hadoop-
based DSW for network traffic analysis, using off-the shelf
Impala query engine and Parquet file format based on Google’s
Dremel [38] to achieve high performance, relying on columnar
data storage. Big Data Analysis Frameworks based on the
MapReduce paradigm have been recently started to be adopted
for NTMA applications [39]. Considering the specific context
of network monitoring, some solutions to adapt Hadoop to
process traffic data have been proposed [40]. However, the
main drawback of Big Data technologies in general is their
inherent off-line processing, which is not suitable for real-time
traffic analysis, highly relevant in NTMA tasks. One of the
few systems that leverage Hadoop for rolling traffic analysis
is described in [41]. As we mentioned before, there have also
been some Big Data Analysis Frameworks for online data
processing, but none of these has been applied to the NTMA
domain.

The results of the individual studies presented in this paper
have been partially presented in recent workshops and confer-
ences [42]–[44]. The additional value of this paper is to provide
a single source of information compiling all the studies,
following in all the cases a well structured and systematically
applied analysis procedure and comparing the characteristics
of the three studied services. In addition, providing a more
complete and detailed overview on the state of the art in BDA
platforms in the same paper, and in particular targeting network
traffic monitoring and analysis, adds a complete wrapper to the
problematic of characterizing and tracking massively popular
services in today’s cellular networks. Finally, the additional
details on DBStream and the release of its code as open
software makes of the paper a great source of information
for practitioners willing to grab the problem of big network
traffic monitoring and analysis from the basis. Indeed, we
expect this paper to be highly useful for ISPs willing to
increase their visibility and management capabilities on their
networks, allowing network operators to better understand how
to dimension and operate their access networks in order to
correctly provision this novel surge of services.

III. DBSTREAM SYSTEM OVERVIEW

DBStream is a novel continuous analytics system. Its
main purpose is to process and combine data from multiple
sources as they are produced, create aggregations, and store
query results for further processing by external analysis or
visualization modules. The system targets continuous network
monitoring but it is not limited to this context. For instance,
smart grids, intelligent transportation systems, or any other use
case that requires continuous process of large amounts of data
over time can take advantage of DBStream.

DBStream combines on-the-fly data processing of DSMSs
with the storage and analytic capabilities of DBMSs and
typical big data analysis systems such as Hadoop. In contrast



to DSMSs, data are stored persistently and are directly avail-
able for later visualization or further processing. As opposed
to traditional data analytics systems, which typically import
and transform data in large batches (e.g., days or weeks),
DBStream imports and processes data in small batches (e.g.,
on the order of minutes). Therefore, DBStream resembles a
DSMS in the sense that data can be processed quickly, but
streams can be re-played from past data. The only limitation
is the size of available storage. DBStream thus supports a
native concept of time. At the same time DBStream provides
a flexible interface for data loading and processing, based on
the declarative SQL language used by all relational DBMSs.

Two salient features of DBStream are the following: first, it
supports incremental queries defined through a declarative in-
terface based on the SQL query language. Incremental queries
are those which update their results by combining newly
arrived data with previously generated results rather than being
re-computed from scratch. This enables continuous time-series
based data analysis, which is a strong requirement for real-time
NTMA applications such as anomaly detection. Secondly, in
contrast to many database system extensions, DBStream does
not change the query processing engine. Instead, queries over
data streams are evaluated as repeated invocations of a process
that consumes a batch of newly arrived data and combines
them with the previous result to compute the new result.
Therefore, DBStream is able to reuse the full functionality of
the underlying DBMS, including its query processing engine
and query optimizer.

DBStream is built on top of a SQL DBMS back-end. We
use the PostgreSQL database in our implementation, but the
DBStream concept can easily be used with other databases and
it is not dependent on any specific features of PostgreSQL.

Last but not least, we have benchmarked DBStream against
data processing systems based exclusively on standard Post-
greSQL DBMS [44], as well as against MapReduce-based
systems including Hadoop [44] and Spark [36], obtaining in
all cases outperforming results, even when running in less
powerful hardware configurations. For example, in [36] we
show that a single DBStream node can outperform a cluster
of 10 Spark nodes by a factor of 2.6 when incremental
queries are involved. We refer the reader to our previous
work [36], [44] for more details about such benchmarks.
Even more, DBStream has been operational for more than one
year, processing the traffic of a national-wide cellular ISP in
Europe with more than 160 queries running continuously on
top of the imported traffic. We are currently comparing the
performance of DBStream against other stream-based analysis
systems – such as Spark streaming [32], we plan to publish
the obtained results once we are done with the study. The
important message is that DBStream offers high performance
and processing power, even when running on limited hardware,
as demonstrated both in the practice as well as by extensive
benchmarking.

A. System Architecture

In DBStream, base tables store the raw data imported into
the system, and materialized views (or views for short) store
the results of queries such as aggregates and other analytics —
which may then be accessed by ad hoc queries and applications
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Figure 1. General overview of the DBStream architecture. DBStream
combines on-the-fly data processing of DSMSs with the storage and analytic
capabilities of DBMSs and big data analysis systems such as Hadoop.

in the same way as base tables. Base tables and material-
ized views are stored in a time-partitioned format inside the
PostgreSQL database, which we refer to as Continuous Tables
(CT). Time partitioning makes it possible to insert new data
without modifying the entire table; instead, only the newest
partition is modified, leading to a significant performance
increase.

A job defines how data are processed in DBStream, having
one or more CTs as input, a single CT as output and an SQL
query defining the processing task. An example job could be:
“count the distinct destination IPs in the last 10 minutes”.
This job would be executed whenever 10 new minutes of data
have been added to the input table (independently of the wall
clock time) and stored in the corresponding CT.

Fig. 1 gives a high-level overview of the DBStream ar-
chitecture. DBStream consists of a set of modules running as
separate operating system processes. The Scheduler defines
the order in which jobs are executed, and besides avoiding
resource contention, it ensures that data batches are processed
in chronological order for any given table or view. Import
modules may pre-process the raw data if necessary, and signal
the availability of new data to the Scheduler. The scheduler
then runs jobs that update the base tables with newly arrived
data and create indices, followed by incrementally updating
the materialized views. Each view update is done by running
an SQL query that retrieves the previous state of the view
and modifies it to account for newly arrived data; new results
are then inserted into a new partition of the view, and indices
are created for this partition. View Generation modules
register jobs at the Scheduler. Finally, the Retention
module is responsible for implementing data retention policies.
It monitors base tables and views, deleting old data based on
predefined storage size quotas and other data retention policies.
Since each base table and view is partitioned by time, deleting
old data is simple: it suffices to drop the oldest partition(s).

The DBStream system is operated by an application server
process called hydra, which reads the DBStream configu-
ration file, starts all modules, and monitors them over time.
Status information is fetched from those modules and made
available in a centralized location. Modules can be placed on
separate machines, and external programs can connect directly
to DBStream modules by issuing simple HTTP requests.



B. Continuous Analytics Language

Many continuous and streaming query languages have been
proposed [2], [27], [45], but they assume that data are not
stored persistently and that queries can only refer to temporary
states (e.g., a current window of time). Typically, DBMSs
support defining views using SQL queries, but either the result
of the view is generated at query time, or the view is updated
whenever a new row of data is added to the original table.
This results in very low performance when huge numbers of
rows are constantly imported into the original table. In contrast,
DBStream enables users and applications to declaratively
specify, using arbitrary SQL, exactly how to update a view
when a new batch of data is inserted into its source table(s).
These specifications may even refer to previously generated
results that are stored in the same view, which, to the best
of our knowledge, is not declaratively supported by any other
system. Below we show an example of a typical aggregation
query, counting the number of rows per minute and device
class. If the input table A has one flow in each row, the number
of rows corresponds to the number of flows.

<job inputs="A (window 15min)"
output="B (window 15min)"

schema="time int4, dev_class int4, cnt int4">
<query>
select time - time%1min, dev_class, count(*)
from A
group by serial_time, dev_class

</query>
</job>

In more detail, the XML attribute inputs is used to define
one or more input streams. For each input stream, the batch
size is specified with a window definition; in the example,
the window size is 15 minutes. The output attribute is
used to specify an output stream, which then can be used as
input to other queries. The output stream also has a window
definition. In addition, for the output stream, the schema
is defined as the set of data types returned by the query.
Note that the first column must be a monotonically increasing
timestamp, which is used in the window definitions. Inside
the query XML element, an SQL query defines how the
input(s) should be processed. The result of this query is then
stored in the new window of the output table. In the query,
all features of PostgreSQL, including the very flexible User
Defined Functions (UDF)s, can be used to process the data.
Utilizing UDFs, it is easy to add code written in Python, Perl,
C, R and other programming languages into the query.

In particular, it is possible to define incremental queries
through this approach. An incremental query permits to update
some specific output table, based on the combined processing
of its previous window content and the content of the new
input stream window. This is useful when, e.g., computing
cumulative counts and sums over long periods of time. In this
case, it suffices to add the volumes from the new input window
to the cumulative sums maintained in the output table.

To conclude, we have made DBStream open to the research
community, aiming at an increasing usage of such technology
for the purpose of NTMA. The code is available on GitHub at
https://github.com/arbaer/dbstream/, including full installation
and deployment details.

IV. DATASETS AND ANALYSIS METHODOLOGY

Our study is conducted on top of three large-scale network
traffic traces collected and analyzed on the fly at the core of
a European national-wide cellular network in mid 2013 and
early 2014. As depicted in Fig. 2, flows are monitored at
the well known Gn interface, and analyzed with DBStream.
Facebook and YouTube traffic is carried on top of HTTP (we
do not consider HTTPS for the study of these services, as its
usage in 2013 was very limited in mobile devices), so we rely
on a HTTP-based traffic classification tool for cellular traffic
called HTTPTag [46] to unveil the corresponding YouTube and
Facebook flows. HTTPTag classification consists in applying
pattern matching techniques to the hostname field of the
HTTP requests.

The YouTube dataset corresponds to almost 90 hours of
traffic flows collected in the second quarter of 2013. The
Facebook dataset consists of one month of HTTP flow traces
collected in mid 2013. To preserve user privacy, any user
related data are removed on-the-fly, whereas any payload
content beyond HTTP headers is discarded on the fly. The
WhatsApp dataset consists of a complete week of WhatsApp
traffic flow traces collected at exactly the same vantage point
in early 2014. In the case of WhatsApp all communications
are encrypted, so we extended the HTTPTag classification tool
to additionally analyze the DNS requests, similar to [47]. In a
nutshell, every time a user issues a DNS request for a Fully
Qualified Domain Name (FQDN) associated to WhatsApp,
HTTPTag creates an entry mapping this user to the server
IPs provided in the DNS reply. Each entry is time stamped
and contains the TTL replied by the DNS server. Using these
mappings, all the subsequent flows between this user and the
identified servers are assumed to be WhatsApp flows. To avoid
miss-classifications due to out-of-date mappings, every entry
expires after a TTL-based time-out. To increase the robustness
of the approach, the list of IPs is augmented by adding the list
of server IPs signing the TLS/SSL certificates with the string
*.whatsapp.net. Indeed, our measurements revealed that
WhatsApp uses this string to sign all its communications.
Finally, we use reverse DNS queries to verify that the list of
filtered IPs actually corresponds to a WhatsApp domain.

To identify the FQDNs used by the WhatsApp service, we
rely on manual inspection of hybrid measurements. We actively
generate WhatsApp text and media flows at end devices (both
Android and iOS), and passively observe them at two instru-
mented access gateways. We especially paid attention to the
DNS traffic generated by the devices. Not surprising, our mea-
surements revealed that WhatsApp servers are associated to the
domain names whatsapp.net (for supporting the service)
and whatsapp.com (for the company website). In addition,
different third level domain names are used to handle different
types of traffic (control, text messages, and multimedia mes-
sages). Control and text messages are handled by chat servers
associated to the domains {c|d|e}X.whatsapp.net (X
is an integer changing for load balancing), whereas mul-
timedia contents are handled by multimedia (mm) servers
associated to the domains mmsXYZ.whatsapp.net and
mmiXYZ.whatsapp.net for audio and photo transfers, and
mmvXYZ.whatsapp.net for videos. As we see next, chat
and mm servers have very different network footprints. While
connections to chat servers are characterized by low data-rate



flow end time application srv IP AS FQDN – 2DL min RTT bytes up bytes down avg th up avg th down

1395394800 YouTube 74.125.14.82 15169 (Google) youtube.com 36 ms 50 KB 10 MB 500 kbps 4 mbps

1395395100 Facebook 31.13.76.68 32934 (Facebook) facebook.com 20 ms 200 KB 100 KB 150 kbps 350 kbps

1395135900 WhatsApp 108.168.174.24 36351 (SoftLayer) whatsapp.net 113 ms 100 KB 1 MB 200 kbps 1.5 mbps

Table I. FLOW-BASED TRAFFIC DESCRIPTORS. ONCE A TRAFFIC FLOW HAS ENDED – EITHER MARKED BY THE NORMAL TCP-FLOW TERMINATION
PROCESS OR BY A TIME-OUT, THE SET OF FLOW DESCRIPTORS IS COMPUTED ON THE FLY, AND GETS DIRECTLY IMPORTED INTO DBSTREAM FOR

ANALYSIS.
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Figure 2. Monitoring framework used in the analysis of core-cellular
measurements.

and long duration (especially due to the control messages),
media transfers are transmitted in short and heavy flows.

To study the hosting infrastructures of the three services,
we complement the traffic datasets with the name of the
organization and the Autonomous System (AS) hosting the
content, extracted from the MaxMind GeoCity databases3.

To sum-up, after following the aforementioned process, we
obtain – for each newly observed traffic flow and in an on-line
fashion – the set of traffic descriptors reported in Tab. I. Once a
traffic flow has ended – either marked by the normal TCP-flow
termination process or by a time-out, the set of descriptors is
computed on the fly, and gets directly imported into DBStream
for analysis. Based on these flow descriptors, we can study the
content location, the traffic characteristics, the content delivery
dynamics, as well as the service delivery performance for the
addressed services.

V. CONTENT DELIVERY INFRASTRUCTURE

We start by characterizing the YouTube traffic, with a
special focus on its underlying hosting/delivery infrastructure.
As shown in table IV, which reports the number of unique
server IPs hosting YouTube traffic, YouTube IPs are distributed
among several Google ASes as well as hosted by servers at the
local operator (LO from now on). The latter suggests the usage
of content caching. However, we can not say whether these IPs
correspond to content caching performed by the LO and/or to

3MaxMIND GeoIP Databases, http://www.maxmind.com.

Autonomous System % bytes % flows

LO 69.3 66.7
15169 (Google) 30 32.7

Table II. FRACTION OF BYTES AND FLOWS PER AS HOSTING
YOUTUBE.

Country % hosted volume

Europe (generic) 46.8%

Local country 37.2%

Ireland 12.7%

Neighbor country 2.1%

United States 1.1%

Unclassified 0.1%

Table III. TOP FACEBOOK HOSTING COUNTRIES BY VOLUME.

Google servers deployed inside the ISP, which is a common
approach followed by Google to improve end-user experience,
known as Google Global Cache (GGC)4. Table II reports the
fraction of bytes and flows served per AS hosting YouTube,
confirming that the LO plays a key role in the distribution
of YouTube traffic for the monitored cellular network. In
addition, the remaining traffic comes mainly from only one of
the Google ASes (AS 15169). A deeper analysis reveals that
servers provisioning content from this AS to the monitored
networks are located in Europe.

Due to the high number of daily users and the high volumes
of served traffic, Facebook uses a sophisticated content deliv-
ery infrastructure. Indeed, we observed more than 6500 server
IPs hosting Facebook contents in our traces, distributed across
20 countries and more than 260 different ASes. This confirms
the wide-spread presence of several organizations hosting
Facebook contents. Fig. 3 shows the main organizations/ASes
hosting Facebook content, both in terms of number of unique
server IPs and share of delivered flows. Akamai is clearly the
key player in terms of Facebook content hosting, delivering
almost 50% of the flows in our traces, using more than 2260
different server IPs. Interesting enough is the large number
of server IPs observed from two organizations which actually
deliver a negligible share of the flows: the Tiscali International
Network (Tinet) and Cable & Wireless Worldwide (CWW). We
believe these organizations are only caching spurious Facebook
contents. In the remainder of the study we focus on the top 5
organizations/ASes in terms of served flows, depicted in Fig.
3(b): Akamai, Facebook AS, the Local Operator (LO) which
hosts the vantage point, and two Neighbor Operators, NO1 and
NO2.

In the case of WhatsApp, we observed a total of 386 unique

4https://peering.google.com/about/ggc.html



(a) Server IPs per AS. (b) Share of flows hosted per AS.

Figure 3. (a) Unique server IPs used by the top organizations/ASes hosting
Facebook and (b) flow shares per hosting AS. Akamai is clearly the key player
in terms of Facebook content delivery.

server IPs hosting the service, belonging to a single AS called
SoftLayer (AS number 36351)5. To avoid biased conclusions
about the set of identified IPs from a single vantage point, we
performed an active measurements campaign using the RIPE
Atlas measurement network6, where we analyzed which IPs
were obtained when resolving the same FQDNs from 600
different boxes distributed around the globe during multiple
days. These active measurements confirmed that the same set
of IPs is always replied, regardless of the geographical location
of the requester. SoftLayer is a US-based cloud infrastructure
provider, consisting of 13 data centers and 17 Points of
Presence (PoPs) distributed worldwide.

A. Geographical Diversity of Content Hosting Servers

Tab. III provides an overview of the geographical diversity
of the Facebook hosting infrastructure, listing the top countries
where servers are located in terms of volume. Servers’ location
is extracted from the MaxMind GeoCity database, which is
highly accurate at the country level [48]. “Europe (generic)”
refers to a generic location within Europe for which MaxMind
did not return a more accurate information. Almost 99% of
the traffic comes from servers and data centers located in
Europe, close to our vantage point, while only 1% of the traffic
comes from other continents. This is due to three factors: (i)
Akamai, the biggest Facebook content provider, has a very
geographically distributed presence, pushing contents as close
as possible to end-users [6]; (ii) operators heavily employ local
content caching, and large CDNs like Akamai tend to deploy
servers inside the ISPs’ networks, explaining the amount of
traffic coming from the local country of the vantage point; (iii)
the rest of the traffic is handled directly by Facebook, which
has servers split between Ireland (headquarter of Facebook
International) and the US.

The WhatsApp hosting infrastructure is completely differ-
ent. Following the same approach, we observed that despite its
geographical distribution, WhatsApp traffic is handled mainly
by data centers in Dallas and Houston, being as such a fully
centralized US-based service. While this is likely to change in
the future after Facebook’s WhatsApp acquisition, right now,
all messages among users outside the US are routed through
the core network, unnecessarily consuming additional network
resources and potentially impacting the quality of the service.

5SoftLayer: Cloud Servers, http://www.softlayer.com
6The RIPE Atlas measurement network, https://atlas.ripe.net/

Service AS/Organization # IPs #/24 #/16

YouTube

All 2030 63 10
Google AS (15169) 1121 38 2

YouTube AS (43515) 844 15 2
LO 35 4 3

Facebook

All 6551 891 498
Akamai 2264 132 48

Facebook AS 294 57 5
LO 26 8 6

NO1 368 26 14
NO2 374 33 9

WhatsApp SoftLayer AS (36351) 386 51 30

Table IV. NUMBER OF IPS AND PREFIXES HOSTING YOUTUBE,
FACEBOOK AND WHATSAPP. PREFIXES ARE NOT FULLY COVERED/OWN
BY THE ASES BUT USED FOR AGGREGATION AND COUNTING PURPOSES.

To complement the hosting picture, we investigate the
location of the servers from a network topology perspective,
considering the distance to the vantage point in terms of Round
Trip Time (RTT). The RTT to any specific IP address consists
of both the propagation delay and the processing delay. Given
a large number of RTT samples to a specific IP address, the
minimum RTT values are an approximated measure of the
propagation delay, which is directly related to the location
of the underlying server. Cellular networks usually employ
Performance Enhancement Proxies (PEPs) to speed-up HTTP
traffic, and therefore, passive min RTT measurements on top
of HTTP traffic provide incorrect results [49]. We therefore
consider an active measurement approach, running standard
pings from the vantage point to get an estimation of the min
RTT to the servers, similar to [50].

Fig. 4 plots the cumulative distribution of the minimum
RTT to the server IPs hosting (a) YouTube, (b) Facebook and
(c) WhatsApp. Values are weighted by the number of flows
served from each IP, to get a better picture of where the traffic
is coming from. As a confirmation of the geographical diversity
in YouTube, the distribution of min RTT presents some steps
or “knees”, suggesting the existence of different data centers
and/or hosting locations. The largest share of the YouTube
flows – almost 70% of them, come from the LO servers, which
are located inside the ISP (min RTT < 2 ms). The rest of the
flows served from AS 15169 are located at potentially two
geographically different locations, one closer at around 38 ms
from the vantage point – serving about 5% of the flows, and
one farther at about 70 ms – serving the remaining 25% of
the flows (i.e., both inside Europe). The largest majority of
Facebook flows are served by close serves, located at less than
5 ms from the vantage point. In the case of WhatsApp, the min
RTT is always bigger than 100ms, confirming that WhatsApp
servers are located outside Europe. Fig. 4(b) shows that the
service is evenly handled between two different yet potentially
very close locations at about 106 ms and 114 ms, which is
compatible with our previous findings of WhatsApp servers
located in Dallas and Houston.

B. IP Address Space of Content Servers

We study now the server diversity through an analysis
of the IP address spaces covered by the three services as
observed in our traces. Tab. IV summarizes the number of
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(a) min RTT YouTube. (b) min RTT Facebook. (c) min RTT WhatsApp.

Figure 4. Distribution of overall min RTT to YouTube, Facebook and WhatsApp server IPs, weighted by the number of flows hosted.
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(b) # hourly unique IPs in Facebook.
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Figure 5. Active servers daily hosting YouTube, Facebook and WhatsApp. Server IPs used by WhatsApp are further discriminated by type of content.

unique server IPs hosting YouTube, Facebook and WhatsApp,
as well as the /24 and /16 IP blocks or prefixes covered by
the corresponding top organizations hosting them.

We observed 2030 different server IPs providing YouTube
contents, coming mainly from the LO and AS 15169. Inter-
estingly, there is a big number of IPs observed for AS 43515
(YouTube), but these servers have a negligible contribution
volume wise. Akamai and Facebook together account for about
2560 servers scattered around almost 200 /24 IP blocks,
revealing again their massively distributed infrastructure. Even
if WhatsApp servers are geographically co-located, the range
of server IPs handling the content is highly distributed, and
consists of 386 unique IPs covering 51 different /24 prefixes.
However, only a few of them are actually hosting the majority
of the flows, and the same happens for Facebook.

Fig. 5 shows the daily usage of these IPs on a single
day, considering the number of unique server IPs per hour.
The active IPs serving YouTube from AS 15169 show an
abrupt increase at specific times of the day, almost tripling
at peak hours. Note that the number of active IPs from the LO
is almost constant. The number of active IPs serving Face-
book flows from Akamai follows the daily utilization of the
network, peaking at the heavy-load time range. Interestingly,
the IPs exposed by Facebook AS are constantly active and
seem loosely correlated with the network usage. This comes
from the fact that Facebook AS servers normally handle all
the Facebook dynamic contents [4], which include the user
sessions keep-alive. Something similar happens in WhatsApp,
where the number of active IPs remains practically constant
during the day, due to a similar keep-alive effect. However, if
we look a bit closer, we can see some important differences
when separately analyzing WhatsApp chat and mm servers.
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(a) Flows size. (b) Flows duration.

Figure 6. YouTube flow characteristics. Traffic is characterized by short
videos, typical from YouTube. The LO serves smaller and shorter videos,
suggesting that caching at the edge might also include ads.

Fig. 5(d) shows the dynamics of the active IPs used by
WhatsApp on a single day, but using now a finer-grained
temporal aggregation of 10 minutes instead of one hour, and
discriminating by server type. The mm category is further split
into photos/audio (mmi and mms) and video (mmv). Note that
no less than 200 IPs are active even in the lowest load hours.
When analyzing the active IPs per traffic type, we observe
that more than 200 IPs serve WhatsApp mm flows during
peak hours. In addition, we see how all the chat servers are
constantly active (there are about 150 of them), as they keep
the state of active devices to quickly push messages.

VI. NETWORK TRAFFIC ANALYSIS

Let us know focus on the characteristics of the traffic flows
carrying YouTube, Facebook and WhatsApp contents. Fig. 6
reports the characteristics of the YouTube flows in terms of
size and duration. Traffic is characterized by short videos, in
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(a) Shares of hosted volume per org./AS. (b) Distribution of flow sizes.

Figure 7. Hosted volume and distribution of flow sizes per organization.

the order of some MB, and typically shorter than a couple of
minutes. The LO serves smaller and shorter videos, suggesting
that caching at the edge might also include ads. The long-tailed
distributions show that there are also very long videos, which
are also sometimes uploaded to YouTube.

Fig. 7 depicts the volume share of Facebook contents
hosted by each org./AS, as well as the flow size distributions.
Akamai hosts more than 65% of the total volume observed in
our traces, followed by Facebook AS itself with about 19%.
Comparing the volume shares in Fig. 7(a) with the flow shares
in Fig. 3(b) evidences a clear distinction on the content sizes
handled by both Akamai and Facebook AS: while Akamai
hosts the bigger flows, Facebook AS serves only a small share
of the service content. Indeed, as previously flagged by other
studies [4], Akamai serves the static contents of the Facebook
service (e.g., photos, songs, videos, etc.), whereas the Face-
book AS covers almost exclusively the dynamic contents (e.g.,
chats, tags, session information, etc.).

To further explore this distinction, Fig. 7(b) reports the
distribution of the flow sizes served per organization. The
CDF reveals that Akamai clearly serves bigger flows than
Facebook AS. The remaining ASes tend to host bigger flows
than Facebook AS, which is coherent with the fact that ISPs
caching is generally done for bigger objects, aiming at reduce
the load on the core network.

In terms of WhatsApp traffic, Fig. 8 reports the character-
istics of the corresponding flows in terms of size and duration.
Fig. 8(a) shows a scatter plot reporting the flow duration vs.
the flow size, discriminating by chat and mm flows. Whereas
mm messages are sent over dedicated connections, resulting
in short-lived flows, text messages are sent over the same
connection used for control data, resulting in much longer
flows. For example, some chat flows are active for as much as
62 hours. Fig. 8(b) indicates that more than 50% of the mm
flows are bigger than 70 KB, with an average flow size of 225
KB. More than 90% of the chat flows are smaller than 10 KB,
with an average size of 6.7 KB. In terms of duration, Fig. 8(c)
shows that more than 90% of the mm flows last less than 1
min (mean duration of 1.8 min), whereas chat flows last on
average as much as 17 minutes. The flow duration distribution
additionally reveals some clear steps at exactly 10, 15 and
24 minutes, suggesting the usage of an application time-out
to terminate long idle connections. This behavior is actually
dictated by the operating system of the device [24].

features chat mm mmv mmi mms

# bytesdown 16.6% 83.0% 38.8% 12.8% 29.8%

# bytesup 29.5% 70.2% 35.2% 15.0% 17.9%

# flows 93.4% 6.2% 0.3% 2.9% 2.9%

# bytesdown
# bytesdown+up

60.6% 76.3% 75.1% 70.0% 81.9%

Table V. VOLUME AND FLOWS PER TRAFFIC CATEGORY.

VII. CONTENT DELIVERY DYNAMICS

The characterization performed in previous sections mainly
considers the static characteristics of the traffic delivery. In this
section we focus on the temporal dynamics of the content de-
livery. Fig. 10 reports the dynamics of the traffic provisioning
from the main ASes in terms of flow counts. The number
of downloaded flows follows a standard daily usage dictated
by the number of customers in the network, with a marked
peak-hour effect, between 18:00 and 22:00. Interestingly, the
relative increase in the number of served flows at peak time
from the LO is stronger than for the Google AS, suggesting a
potentially different provisioning police.

Fig. 9 shows the dynamics of WhatsApp for three con-
secutive days, including the fraction of flows and traffic
volume shares, discriminating by chat and mm traffic. Fig.
9(a) shows the flow count shares, revealing how chat flows
are clearly dominating. Once again we stop in the mmi and
mms servers, which seem to always handle the same share of
flows, suggesting that both space names are used as a mean
to balance the load in terms of photos and audio messages.
Finally, Figs. 9(b) and 9(c) reveal that even if the mm volume
is higher than the chat volume, the latter is comparable to the
photos and audio messaging volume, especially in the uplink.
Tab. V summarizes these shares of flows and traffic volume.

Given that the content delivery infrastructure of Facebook
is particularly interesting in terms of geographical distribution,
we study now the temporal evolution of the servers selected
for provisioning the Facebook flows. To begin with, we focus
on the temporal evolution of the min RTT, as reported in Fig.
4. Fig. 11(a) depicts the temporal variation of the CDF for
all the Facebook flows and for a complete day, considering
a single CDF every three hours period. The CDFs are rather
stable during the day, but present some slight variations during
the night and early morning. To get a better picture of such
dynamics, Fig. 11(b) depicts the hourly evolution of the min
RTT for all the Facebook flows during 3 consecutive days,
being the first day the one analyzed in Fig. 11(a). Each column
in the Fig. depicts the PDF of the min RTT for all the served
flows, using a heat map-like plot (i.e., the darker the color,
the more concentrated the PDF in that value). The flagged
variations are observed during the first day, with some slight
shifts between 6am and 12am from servers at 14ms and 20ms.
The heat map also reveals some periodic flow shifts between
9pm and midnight from servers at 20ms, but impacting a small
fraction of flows. Fig. 11(c) presents the same type of heat
map for Facebook flows, but considering a dataset of 2012
from the same vantage point [50]. The temporal patterns in
2012 show a much stronger periodic load balancing cycle,
focused in a small number of hosting regions at 7ms, 14ms,
and 37ms. Comparing the results from 2012 with those in 2013
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Figure 8. Characterization of WhatsApp flows. Whereas mm messages are sent over short-lived flows, text messages result in longer and much smaller flows.
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(a) Flows.
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(b) Bytes down.
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(c) Bytes up.

Figure 9. WhatsApp traffic dynamics. mmi and mms servers constantly handle the same share of flows, suggesting that both space names are used as a means
to balance the load in terms of photos and audio messages.

suggests that Facebook content delivery is becoming more
spread in terms of hosting locations, and load balancing cycles
are becoming a-priori less marked. However, when deeply
analyzing the complete dataset of 2013, conclusions are rather
different.

To drill down deeply into this issue, we analyze the
dynamics of the content delivery for the complete Facebook
dataset, spanning 28 consecutive days. Instead of considering
the variations of the min RTT, we consider now the variations
on the number of flows served by the observed IPs. Changes
in the distribution of the number of flows coming from the
complete set of 6551 server IPs reflect variations in the way
content is accessed and served from the hosting infrastructure
observed in our traces. For this analysis, we consider a time
granularity of one hour, and therefore compute the distribution
of the number of flows provided per server IP in consecutive
time slots of one hour, for the complete 28 days. This results
in a time-series with a total of 24 × 28 = 672 consecutive
distributions. To quantify how different are two distributions in
the resulting time-series, we use a symmetric and normalized
version of the Kullback-Leibler divergence described in [51].

To visualize the results of the comparison for the complete
time span of 28 days, we use a graphical tool proposed
in [51], referred to as Temporal Similarity Plot (TSP). The
TSP allows pointing out the presence of temporal patterns
and (ir)regularities in distribution time-series by graphical
inspection. In a nutshell, a TSP is a symmetrical, checker-
board, heat-map like plot, in which the value {i, j} reflects how
similar are the two distributions at time ti and tj . Similarity

between both distributions is computed on the basis of an
extension of the well know Kullback-Leibler (KL) divergence.
Using TSP plots provides a powerful approach to graphically
inspect the evolution of certain traffic feature, by reflecting, for
each pair of time-bins, how similar the empirical distributions
of this feature are. Let us take an example to better understand
a TSP plot. Fig. 12 presents different TSPs for the distributions
of all the Facebook flows across all the server IP addresses
providing Facebook content, over a period of 28 days. Each
plot is a matrix of 672 × 672 pixels; the color of each
pixel {i, j} shows how similar are the two distributions at
times ti and tj : black represents low similarity, whereas white
corresponds to high similarity. By construction, the TSP is
symmetric around the 45◦ diagonal, and it can be interpreted
either by columns or by rows. For example, if we read the
TSP by rows, for every value j in the y-axis, the points to the
left [right] of the diagonal represent the degree of similarity
to past [future] distributions. We refer the interested reader to
[51] for a detailed description of the TSP tool.

The three TSPs in Fig. 12 represent the distribution varia-
tions for (a) all the observed IPs, (b) the Akamai IPs and (c) the
Facebook AS IPs. Let us begin by the TSP for all the observed
server IPs in Fig. 12(a). The regular “tile-wise” texture within
periods of 24 hours evidences the presence of daily cycles,
in which similar IPs are used to serve a similar number of
flows. The lighter zones in these 24 hour periods correspond
to the time of the day, whereas the dark zones correspond to
the night-time periods when the traffic load is low. The low
similarity (dark areas) at night (2am-5am) is caused by the
low number of served flows, which induces larger statistical
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Figure 10. YouTube flow counts per hour and per AS. The number of
downloaded flows follows a standard daily usage pattern.

fluctuations in the computed distributions. This pattern repeats
almost identical for few days, forming multiple macro-blocks
around the main diagonal of size ranging from 2 up to 6 days.
This suggests that during these periods, the same sets of IPs
are used to deliver the flows, with slight variations during the
night periods, similarly to what we observed in Fig. 11(a).
However, the analysis of the entire month reveals the presence
of a more complex temporal strategy in the (re)usage of the
IP address space. For example, there is a reuse of (almost)
the same address range between days 10-12 and days 15-16.
Interestingly, we observe a sharp discontinuity on days 18-
19, as from there on, all the pixels are black (i.e., all the
distributions are different from the past ones).

To get a better understanding of such behaviors, Figs. 12(b)
and 12(c) split the analysis for Akamai and Facebook AS
IPs only. The Figs. reveal a different (re)usage policy of the
IPs hosting the contents. In particular, Akamai uses the same
servers for 4 to 7 days (see multi-days blocks around the main
diagonal). When it changes the used addresses, the shift is not
complete as we can observe the macro-blocks slowly fading
out over time. This suggests a rotation policy of the address
space of Akamai, on a time-scale of weeks. On the other hand,
Facebook AS does not reveal such a clear temporal allocation
policy. It alternates periods of high stability (e.g. between days
4 and 10) with highly dynamic periods (e.g., from day 18
onward). It is interesting noticing that Facebook AS is the
responsible for the abrupt change in the distributions observed
from the 18th day on, in the TSP of the overall traffic.

Service Performance – Flow Throughput

To conclude with the analysis, we focus now on the content
delivery performance, measured in terms of flow throughput.
Throughout and latency are today the de-facto and mostly
analyzed Quality of Service (QoS) Key Performance Indicators
(KPIs) to understand the performance of end-user services,
especially from a QoE perspective [52]. Other QoS KPIs such
as packet loss have a direct impact on throughput, in particular
for the kind of traffic we are dealing with, i.e., TCP traffic,
thus we do not consider them directly. We do not consider the
case of Facebook as we were not able to reliably compute the
flow throughput information in this case.

Fig. 13(a) reports the distribution of the average download

throughput per YouTube flow, discriminating by hosting AS.
The download throughput is generally considered as the main
network performance indicator that dictates the experience
of a user watching YouTube videos. When analyzing the
performance results per AS, it is evident that the YouTube
flows served by the LO are the ones achieving the highest
performance, with an average flow download throughput of
2.7 Mbps. This out-performance evidences the benefits of local
content caching and low-latency servers for provisioning the
YouTube flows.

Considering WhatsApp flow throughput, Fig. 13(b) depicts
the uplink and downlink (we consider both directions as
WhatsApp is a symmetrical service) throughputs for flows
bigger than 1 MB. This filtering is performed as a means to
improve the throughput estimations. A-priori, one might expect
that the long RTTs involved in the communications to the
US servers might heavily impact the achieved performance.
This is confirmed for about 30% of the transmitted flows,
which achieve a throughput smaller than 250 kbps. However,
higher throughputs are obtained for the largest shares of flows,
achieving an average per flow downlink/uplink throughput of
1.5 Mbps/800 kbps.

VIII. DISCUSSION AND IMPLICATIONS OF RESULTS

Let us now focus on the interpretation of the findings
presented so far. In this section we provide a comprehensive
discussion of the main take aways of the study, and particularly
elaborate on their implications for network dimensioning, op-
eration and management tasks. Discussion is structured along
five specific topics covering the contributions flagged in Sec. I:
(i) geographical location of servers and contents; (ii) dynamics
of the content delivery; (iii) content caching at the edge; (iv)
traffic characteristics; (v) usage dynamics.

A. Servers Geolocation

Finding: our study reveals that even if the three studied
services are very popular worldwide, their networking host-
ing infrastructures follow very different paradigms: based on
Akamai’s and Google’s pervasiveness, both Facebook and
YouTube are hosted by a highly distributed network archi-
tecture, whereas WhatsApp follows a fully centralized hosting
architecture at cloud servers exclusively located in the US,
independently of the geographical location of the users.

Implications: the first direct implication is in terms of service
performance. WhatsApp flows suffer an important additional
latency for users outside the US, which might impact their
QoE. Being Brazil, India, Mexico and Russia the fastest
growing countries in terms of users7, such a centralized hosting
infrastructure is likely to become a problematic bottleneck
in the near future. On the contrary, YouTube and Facebook
latency due to propagation is highly reduced by local caching
and regional servers’ location, enabling the usage of latency-
sensitive applications on top of these service (e.g., video
conversations, cloud gaming, or interactive video editing). The
second implication is in terms of traffic management. The
SoftLayer servers identified in the study are exclusively used
by WhatsApp, making it very simple for an ISP to identify
WhatsApp flows by server IP address, similarly to [50]. While

7WhatsApp Blog, http://blog.whatsapp.com/
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Figure 11. Temporal variations of the min RTT to Facebook servers. In the heat maps of Figs. (a) and (c), the darker the color, the bigger the fraction of flows
served from the corresponding min RTT value.
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Figure 12. TSP of hourly flow count distributions over 28 days for all the observed IPs hosting Facebook, Akamai IPs, and Facebook AS IPs. A black pixel
at {i, j} means that the distributions at times ti and tj are very different, whereas a white pixel corresponds to high similarity.
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Figure 13. YouTube and WhatsApp flow performance. Flows served by the
LISP are the ones achieving the highest download throughput, evidencing the
benefits of local content caching and low-latency servers.

we do not expect it to happen, a cellular ISP might intention-
ally degrade the performance of WhatsApp flows to discourage
its usage, similarly to what IPSs have done in the past with
Skype traffic8. The final implication is about data privacy. The
geo-location of servers makes users traffic to be hosted in
countries other than their local ones, thus data locality is not
maintained (in the case of WhatsApp, this is 100% confirmed).
In the light of the ever increasing concerns related to privacy
and data security, such a geographical distribution might even
cause legal jurisdiction issues due to different data privacy
protection laws in different countries.

8“Comcast Blocks Some Internet Traffic”, the Whashington Post, 2007.

B. Content Delivery Dynamics

Finding: the highly dynamic and distributed content delivery
mechanisms used by Facebook are becoming more spread in
terms of hosting locations and hosting organizations.

Implications: this makes of Facebook a very challenging
source of traffic for network dimensioning and traffic engineer-
ing. Indeed, it is very difficult for an ISP to properly engineer
its own network when surges of traffic come from potentially
multiple ingress nodes at different times of day. A proper traffic
engineering policy must therefore be dynamic as well, to cope
with such traffic delivery behavior. Delivery dynamics might
even have an impact on the transport costs faced by the ISP
providing the Internet access; as we show in [21], traffic being
served from other neighboring ISPs for which uni-directional
peering agreements have been established results in extra costs
for the local ISP.

C. Content Caching

Finding: there is a widespread usage of local content caching
in YouTube mobile.

Implications: local content caching/hosting by servers at the
edge of the ISP provides high benefits in terms of flow
throughput, ultimately leading to an improved QoE and user
engagement.



D. Traffic Characteristics

Finding: WhatsApp is not only about text-messaging, but
more than 75% of its traffic corresponds to multimedia file
sharing, both in the uplink and downlink directions.

Implications: the growing popularity of WhatsApp in cellular
networks might cause a serious performance issue for ISPs,
especially in the uplink direction, where resources are scarcer.
On the other hand, given that multimedia contents are static
and that many of them are shared multiple times among
WhatsApp groups, the usage of local caching techniques might
result in important savings and performance enhancement.

E. Usage Patters

Finding: traffic volumes and flows in the three services follow
a very predictable time-of-day pattern, commonly observed in
user-generated traffic.

Implications: even if not simple to achieve, this type of
patterns suggest that an ISP might better optimize the resources
of the access network through time-based traffic engineering
mechanisms, dynamically adjusting network resources based
on load predictions.

IX. CONCLUDING REMARKS

In this paper we presented a characterization of the net-
working aspects of three highly popular, Internet-scale ser-
vices in cellular networks: YouTube, Facebook and WhatsApp.
Through the analysis of large-scale traffic collected at the
cellular network of a major European ISP and analyzed with
a tailored big data-based platform for NTMA, we dissected
and compared the networking behavior of these services,
considering not only the traffic flows but also the network
infrastructures hosting them. We showed that while YouTube’s
and Facebook’s contents are hosted in multiple geographical
locations and are provisioned through highly dynamic address-
ing mechanisms, the WhatsApp hosting infrastructure is fully
centralized at cloud servers exclusively located in the US,
independently of the geographical location of the users.

The YouTube analysis evidenced a widespread utilization
of content caching at the edge of the monitored cellular
network, which proved to be highly efficient and performant
in terms of downlink video flow throughput. The Facebook
analysis revealed a very structured yet tangled architecture
hosting the service, mainly due to the pervasiveness and
distributed nature of Akamai, its hosting CDN. We have fully
dissected the nicely structured internal naming scheme used by
WhatsApp to handle the different types of connections, which
shall enable an easy way to monitor its traffic in the network.

In addition, we have described DBStream, a flexible and
scalable BDA platform for network traffic monitoring and
analysis, which proved to be highly useful in the performed
analysis as presented in this paper. We have also made DB-
Stream open source for this paper, which we expect would be
highly useful for the network management community in the
years to come.

We believe that the characterization provided in this paper
offers a sound basis to cellular network operators to under-
stand the traffic dynamics behind popular services, enabling

a better traffic engineering and network management for such
applications.
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