
DBStream: A Holistic Approach to
Large-Scale Network Traffic Monitoring and Analysis

Arian Baera,∗, Pedro Casasa, Alessandro D’Alconzoa, Pierdomenico Fiadinoa, Lukasz Golabb, Marco Melliac, Erich
Schikutad

aFTW Forschungszentrum Telekommunikation Wien, Donau-City-St. 1, 1220 Vienna, Austria
bUniversity of Waterloo, 200 University Avenue West Waterloo, ON, Canada

cPolitecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
dVienna University, Waehringerstrasse 29, 1090 Vienna, Austria

Abstract

In the last decade, many systems for the extraction of operational statistics from computer network interconnects
have been designed and implemented. Those systems generate huge amounts of data of various formats and in various
granularities, from packet level to statistics about whole flows. In addition, the complexity of Internet services has
increased drastically with the introduction of cloud infrastructures, Content Delivery Networks (CDNs) and mobile
Internet usage, and complexity will continue to increase in the future with the rise of Machine-to-Machine communication
and ubiquitous wearable devices. Therefore, current and future network monitoring frameworks cannot rely only on
information gathered at a single network interconnect, but must consolidate information from various vantage points
distributed across the network.

In this paper, we present DBStream, a holistic approach to large-scale network monitoring and analysis applications.
After a precise system introduction, we show how its Continuous Execution Language (CEL) can be used to automate
several data processing and analysis tasks typical for monitoring operational ISP networks. We discuss the performance
of DBStream as compared to MapReduce processing engines and show how intelligent job scheduling can increase its
performance even further. Furthermore, we show the versatility of DBStream by explaining how it has been integrated to
import and process data from two passive network monitoring systems, namely METAWIN and Tstat. Finally, multiple
examples of network monitoring applications are given, ranging from simple statistical analysis to more complex traffic
classification tasks applying machine learning techniques using the Weka toolkit.

Keywords:
Network Monitoring, Data Stream Warehouse, Machine-to-Machine Traffic, On-line Traffic Classification, Machine
Learning, Cellular Networks

1. Introduction

Since the introduction of computer networks in general
and the Internet more specifically, networked computer
systems have become more and more important to modern
society. Todays Internet is a highly complex, distributed
system, spanning the globe and reaching even into outer
space to the International Space Station. Human com-
munication relies to a large extent on emails, (mobile)
phone calls and social media. It has become normal to
buy electronics, clothes or even cars, book flights and make
bank transfers over the Internet. The financial market ex-
changes large amounts of stocks via interconnected high

∗Corresponding author
Email addresses: arian.baer@gmail.com (Arian Baer),

casas@ftw.at (Pedro Casas), dalconzo@ftw.at (Alessandro
D’Alconzo), fiadino@ftw.at (Pierdomenico Fiadino),
lgolab@uwaterloo.ca (Lukasz Golab), mellia@polito.it (Marco
Mellia), erich.schikuta@univie.ac.at (Erich Schikuta)

frequency trading systems. This shows that computer net-
works have become a corner stone of today’s modern soci-
ety.

Network operators are responsible for the proper func-
tioning of those highly complex networks. They face the
challenge of detecting and reacting very quickly to network
anomalies, security breaches and, at the same time, plan
ahead to adopt their networks to novel usage patterns.
Network monitoring and analysis systems play a central
role in supporting operators in these tasks. However, the
above challenges put a wide range of requirements to the
system in charge to collect, store, and process the gath-
ered monitoring data. Such a system should be: (i) able
to store data over extended time periods, (ii) make analy-
sis results available quickly, on the order of minutes or even
seconds, and (iii) network experts should be able to easily
specify and extend typical analysis tasks. Whereas, many
isolated systems and approaches have been proposed to
capture and analyze network data [1, 2, 3, 4], there is still

1

ISP Network

IXP

Internet
eXchange
Point

peering link
access
links

access
links

monitoring
probe

DBStream

NTMA
Applications

External Data

Figure 1: A standard deployment of DBStream in an ISP network.
DBStream is a data repository capable of processing data streams
coming from a wide variety of sources.

a clear lack of open, comprehensive approaches for inte-
grating, combining and post processing data from multiple
sources.

In this paper, we propose the open source system DB-
Stream1, a holistic approach to large-scale network data
analysis. DBStream is a Data Stream Warehouse (DSW)
based on traditional database techniques, designed with
comprehensive network monitoring in mind. We show that
DBStream is performance-wise at least on par with the
most recent large-scale data processing frameworks such
as Hadoop and Spark. We report the use of DBStream
for several network monitoring and analysis applications,
and the experience from its deployment in a production
mobile network. Finally we show a DBStream integra-
tion with the well-known Weka Machine Learning (ML)
toolkit can be used for on-line detection of Machine-to-
Machine (M2M) devices in mobile networks, using only
high level statistical information.

The specific contributions of the paper are:

• We propose the open source DSW DBStream.

• We present the high level, micro service architecture
of DBStream.

• We show the high performance of DBStream by com-
paring it to state-of-the-art large-scale data process-
ing frameworks.

• We demonstrate how the Continuous Execution Lan-
guage (CEL) language empowers users to solve ana-
lytic challenges effectively.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the related work. In Section 3 and 4, we de-
scribe the system architecture and the processing language

1https://www.github.com/arbaer/dbstream

of DBStream, respectively. In Section 5, the performance
of DBStream is compared to the in-memory MapReduce
framework Spark. We discuss the impact of jobs schedul-
ing on DBStream performance in Section 6. We provide
in Section 7 an extensive report of the DBStream usage in
several network traffic monitoring and analysis projects, as
well as in a nation-wide mobile network. A prototypical
integration of DBStream with a ML library is presented
in Section 8, along with its application to M2M traffic de-
tection. Finally, Section 9 provides the overall conclusions
and an outlook on the future work.

2. Related Work

The introduction of the term Big Data lead to a new
era in which many scientific and commercial organiza-
tions started designing and developing novel large-scale
data processing systems. Most of them achieve increased
performance by re-implementing the whole or parts of
the data processing engine. They often relax Atomicity,
Consistency, Isolation, Durability (ACID) constraints [5]
and/or apply novel data processing paradigms. Still, a
limitation of such systems is the inability to cope with
continuous analytics, where data arrive as high-volume,
possibly delayed, data streams. Data Stream Management
Systems (DSMSs), such as Gigascope [6], Borealis [7], Es-
per [8] or the more recent Streambase system [9], support
continuous processing, but they cannot support analytics
over historical data, as required in Network Traffic Mon-
itoring and Analysis (NTMA) applications, and are not
available as open source.

DSW systems extend traditional databases and Data
Warehouse (DWH) with the ability to ingest and process
new data in near real-time. DataCell [10] and DataDe-
pot [11] are two examples, as well as the DBStream sys-
tem presented in this paper. Another important develop-
ment are Not only SQL (NoSQL) systems based on the
MapReduce framework made popular by Google in [12].
Those systems use a key-value interface rather than a high
level declarative language, like Structured Query Language
(SQL), typically supported by Database Management Sys-
tems (DBMSs). Hadoop [13] and Hive [14] are two popu-
lar open source implementations of the MapReduce frame-
work. Dremel [15] is a Google proprietary technology that
exploits the MapReduce paradigm and uses a column ori-
ented database to optimize web search. Spark [16] is an-
other interesting system, promising an approximate 100x
scale up factor with respect to the MapReduce implemen-
tation of Hadoop, by using an in-memory processing ar-
chitecture.

MapReduce systems focus on processing data in large
batches, rather than streams, as required for NTMA appli-
cations. There has been some recent work on enabling real-
time analytics in NoSQL systems, such as Muppet [17],
SCALLA [18] and Spark Streaming [19]. At the moment,
the main focus of Spark Streaming lies on the processing

2

of real-time data, e.g., a stream of twitter feeds. Unfor-
tunately, it is not possible out-of-the-box to perform non
real-time processing, where data may arrive with delays
of several seconds or even minutes. Nevertheless, Spark
Streaming seems to be an interesting candidate for future
network monitoring solutions.

However, with the exception of the proprietary, closed-
source DataDepot system, none of these systems were
designed to address continuous data processing, required
for NTMA applications. Furthermore, to the best of our
knowledge, DBStream is the only open source system that
supports incremental queries defined through a declarative
language. As we show in this paper, the continuous ana-
lytical capabilities, and the incremental query processing,
make DBStream particularly suited for tracking the status
of large-scale mobile networks and for traffic classification.

The field of automatic network traffic classification has
been extensively studied during the last decade [20, 21].
The specific application of ML techniques to the traffic
classification problem has also attracted large attention
from the research community. A non-exhaustive list of
standard supervised ML-based approaches includes the
use of Bayesian classifiers, linear discriminant analysis
and k-nearest-neighbors, decision trees and feature selec-
tion techniques, and support vector machines. In ad-
dition, many unsupervised and semi-supervised learning
techniques have been used for network traffic classification,
including the use of k-means, DBSCAN, and AutoClass
clustering. Also the GRIDCLUST algorithm presented
in [22] and its later extension to the BANG-clustering sys-
tem [23] are good candidates for being used in NTMA ap-
plications, due to their computational efficiency on large
datasets. We point the interested reader to [24] for a de-
tailed survey on the different ML techniques applied to
network traffic classification.

More recent approaches for traffic classification focus on
the specific analysis of the applications running on top of
HTTP/HTTPS [25, 26], including the analysis of modern
Internet services such as YouTube, Facebook, WhatsApp,
etc.

The particular classification and analysis of M2M traffic
and M2M devices has very recently emerged as a need to
understand the novel traffic patterns such devices intro-
duce. So far only a few papers have explictily addressed
this problem. The most relevant work on M2M traffic char-
acterization is provided in [27]. There, the authors present
an extensive analysis of the traffic generated by M2M de-
vices in the AT&T US mobile network. They apply a Type
Allocation Code (TAC)-based approach to separate M2M
from other devices.

The M2M TRAffic Classification (MTRAC) approach
presented in Section 8 aims at the classification of M2M
devices in mobile network traffic. The whole system re-
lies on DBStream for the data collection and processing,
is operated online, and assumes the availability of only
coarse-grained traffic descriptors at the user session level.

Scheduler

Hydra
Monitoring Module

Import
cont. table1

.

.

.
cont. tableN

View Generation

job1
.
.
.

jobN

moduleN

job1
.
.
.

jobN

module1 Retention
cont. table1

.

.

.
cont. tableN

DBStream Server

Monitoring
ProbeN

Import
Probe

folderY
folderZ

.

.

.

Monitoring
Probe1

Import
Probe

folderA
folderB

Figure 2: General overview of the DBStream architecture.

3. DBStream System Design

The main purpose of DBStream is to store and analyze
large amounts of network monitoring data. But, it might
also be applied to data from other application domains
like e.g. smart grids, smart cities, intelligent transporta-
tion systems, or any other use case that requires contin-
uous processing of large amounts of heterogeneous data
data over time. DBStream is implemented as a middle-
ware layer on top of PostgreSQL. Whereas all data pro-
cessing is done in PostgreSQL, DBStream offers the abil-
ity to receive, store and process multiple data streams in
parallel. In addition, DBStream offers a declarative, SQL-
based CEL which is highly precise but yet very flexible and
easy to use. Using this novel stream processing language,
advanced analytics can be programmed to run in parallel
and continuously over time, using just a few lines of code.

In Figure 2, a high-level overview of the architecture of
DBStream is shown. The design of DBStream follows a
micro service architecture and is composed of a set of de-
coupled modules, each executed as a separate operating
system process. As opposed to a monolithic software ar-
chitecture, modules can be stopped, updated and restarted
without the need to stop and restart the whole DBStream
system. The most important module is the Scheduler,
which dictates the ordering in which jobs are executed.
The Import Probe module, running on one or more mon-
itoring probes, sends locally stored data to the Import

module running on the DBStream side. The DBStream
Import module writes data into time partitioned Con-
tinuous Tables (CTs) and also signals the availability of
new data to the Scheduler module. Data from one or
more CTs is read by jobs registered in the configuration
of the View Generation modules and the results are writ-
ten into new CTs, which are created automatically or ap-
pended to if the CTs do not already exists. In each of
those jobs, data projections, transformations or aggrega-
tions are expressed in a batched data stream processing

3

language called CEL, which is explained in full detail in
Section 4. The Retention module monitors the size of
CTs and deletes old data if a certain pre-configured size
limit is exceeded.

All modules register tasks for execution at the
Scheduler module. As soon as the Scheduler detects that
a certain task can now be executed, it messages the corre-
sponding Import, View Generation or Retention module
to start the task. The decision of when a certain task is
ready for execution is based on two conditions. i) a full
new window of data has to be available for all input time
windows, meaning that all precedence constraints of a task
have to be met. ii) the scheduling policy. As shown in de-
tail in Section 6, it might not always be optimal to execute
each job right away, but, in certain cases it is more efficient
to wait for other jobs, sharing the same input partition.
Therefore, in specific situations, e.g., when the maximum
number of parallel jobs is exceeded, the Scheduler blocks
the execution of certain jobs.

Each job advances one single CT. Meta data of each
CT, along with the information until which point in time
until a job has finished processing is persisted in the data
dictionary of DBStream, whenever the internal state of
the job is advanced by the execution of a task. In case the
system crashes during the execution of a task and later
on is restarted, the data dictionary is checked by the View

Generation module for the latest point in time until which
the job was finished. All intermediate tables, which might
have been created before the crash, but are not complete,
are deleted and recreated. This guaranties the Atomicity
property of the ACID constraints.

The design decision to decouple job scheduling from job
execution makes the system more flexible. Jobs can be
executed by different View Generation modules and if one
job has to be changed the Scheduler and all other View

Generation modules can continue processing. Therefore,
users can change or add new jobs to the system without
impacting already running jobs.

As shown in Figure 2, all DBStream modules are started
and monitored by an application server process called
hydra. It reads the DBStream configuration file and starts
all modules listed there. Each module has a standardized
interface to provide status information. Hydra periodically
fetches this status information and makes it available in a
centralized location. Another crucial function of the hydra
module is restarting other crashed modules. Since modules
might depend on external processes potentially running on
remote machines, they might crash at unpredictable mo-
ments. Therefore, all DBStream modules are designed and
implemented such that they can crash at any point in time
and leave the whole system in a recoverable state. This
provides the guaranties of the Durability property of the
ACID constraints to DBStream.

The communication with hydra as well as the communi-
cation between modules, e.g., between the Scheduler and
the View Generation, is implemented as remote proce-
dure calls over the HTTP protocol. Therefore, it is easily

Term Description
window A time slice of a stream, defined

by stream name (window N
[delay M] [primary]) [as win-
dow name] [, ...]

primary Marks the window along which
processing is advanced. primary
can only be used once per job.

STARTTS Is replaced in a query with the
start of the primary window.

ENDTS Is replaced in a query with the
end of the primary window.

delay Can be used to shift a window
into the past.

job Defines how inputs are trans-
formed into the output stream.
Its State tracks the application
time until which the job has been
finished.

task Concrete unit of work which is
executed to advance the state of
a job.

application time Time of the application, con-
tained in the processed data.

system time Time of the processing system,
often referred to as wall-clock
time.

Table 1: Definition of the most important terms of CEL.

possible to distribute certain modules of DBStream over
several machines.

3.1. System vs. application time

DBStream is a DSW and therefore similar to a stream
processing system in many ways. In contrast to typical
database applications, where time often is modeled as a
column with a specific data type, time is an essential part
of the architecture of DBStream. Therefore, the exact defi-
nition of time is crucial, determining how the system works
and what kind of problems it can solve. The authors of [28]
give an interesting overview of different methodologies for
time handling in stream processing systems. Two of their
definitions are very important to understand the time han-
dling used by DBStream. First, the term system time is
defined to be the wall-clock-time at the system processing
the data. Second, the application time is used for times-
tamps which are part of the data processed by the system.
Network monitoring systems typically assign a timestamp
to observed events and use their wall-clock-time for this
purpose. Since such systems are typically implemented
as some sort of stream processing system, and one of the
purposes of stream processing systems is to generalize the
design of such systems, using the wall-clock-time directly
is a reasonable choice.

The situation is very different for systems like DB-
Stream. Here, the goal is to store and analyze the output

4

of other, typically remote systems which are stream pro-
cessing systems themselves. Data arriving at DBStream
already have a timestamp, assigned by another system in
a higher layer of the processing chain. It would not be
very helpful to add another wall-clock-time timestamp to
the data. Instead, the time the event was created, already
contained in the data, is of importance. Therefore, DB-
Stream always uses the application time contained in
the data for all time windows processing.

Performance is measured by the View Generation mod-
ule on the level of tasks, not individual data rows. Each
time a task is executed, the execution time of the task is
measured and can be compared to the size of the primary
window of that task. For example, the primary window is
10 minutes, meaning for each 10 minutes of time one task
is executed. If the task can be executed in 1 minute, the
whole job executes 10 times faster than real-time and thus
the performance of this task is good.

4. Continuous Execution Language (CEL)

In this section, we describe the batched stream process-
ing language CEL originally introduced in [29] in full de-
tail. Table 1 gives an overview of the important terms of
CEL. We start with a simple example explaining the main
functions of CEL. In the following Section 4.1 we detail
the Continuous Tables (CTs) used in CEL. Section 4.2
describes how time windows are handled in DBStream.
Finally, in Section 4.3 we explain multiple complex ex-
amples showing the full expressive power of the presented
language.

We start with a very simple example of CEL. Sup-
pose we want to generate aggregate statistics from a
router in the network under study. This router ex-
ports data on a per minute basis in the widely adopted
NetFlow [30] format. Each row contains information
on a per flow basis, where a flow is identified by the
5-tuple of <source and destination IP, source and

destination port and IP protocol number>. In ad-
dition, each row contains information about the uploaded
and downloaded bytes. Our first CEL query will com-
pute the amount of uploaded and downloaded bytes pass-
ing through that router on a per hour basis.

Algorithm 1 Single window CEL job

<job inputs="A (window 60min)"

output="W"

schema="serial_time int4,

total_download int8, total_upload int8" >

<query>

select __STARTTS, sum(download),

sum(upload) from A group by __STARTTS

</query>

</job>

In CEL, such a job is expressed as presented in Algo-
rithm 1. In this example, the inputs XML-attribute de-
fines the input windows and the output XML-attribute
defines the destination Continuous Table (CT) for the re-
sult. Here, only a single input window of 60 minutes of
the CT A is defined, therefore a new task represented as a
SQL query is executed in the underlying DBMS for each
full hour of input data. The result of this SQL query is
then stored in the CT with the name W. The SQL-query
inside the query XML-element calculates the sum over all
uploaded and downloaded bytes in one hour. In the from

part of the query, the name of the CT A is used, which is a
place holder and is replaced by a time slice of stream A of
one hour for every executed task. Please note the special
keyword STARTTS which can be used in DBStream CEL
jobs and is replaced with the start time of the primary
window.

4.1. Continuous Tables

In DBStream all data are stored in Continuous Ta-
bles (CTs). First, raw data are imported into what would
be called base tables in traditional DWHs. Jobs process
data batches from those base tables and store the output
into materialized views. Each job can have multiple in-
puts, which can either be base tables or materialized views.
From each input, the job fetches a certain time slice, e.g.,
5 minutes which is available to the SQL query inside the
job like a regular table. The SQL queries are executed in
PostgreSQL and use INSERT INTO to store the results in
regular time partitioned tables. We refer to a time par-
titioned base table or materialized view in DBStream as
a Continuous Table (CT), since both are handled in the
same way. Please note, that in contrast to a DSMS, in
DBStream all data are stored on disk and can be used
in CEL jobs over extended time periods, only limited by
the available disk space. For example, a job can compare
the current hour of data with the same hour of the day
one month ago, without keeping a full month of data in
memory.

4.2. Time Window Definitions

In Figure 3, an overview of several possible time window
definitions is shown. Those time windows define how jobs
are continuously executed over time and which data is read
from each input in each executed task. We give two more
illustrative examples on how does time windows are used
in real-world use cases in Section4.3.

CEL does not have an explicit definition for sliding
windows, but instead, for each job one single window is
marked to be the primary window by specifying the pri-
mary keyword in its definition. As soon as a task is suc-
cessfully executed, the internal state of the corresponding
job is moved into the future by the size of one primary win-
dow. When enough data in all input windows of the next
task becomes available, the scheduler executes the next
task if the maximum amount of parallel tasks is not yet

5

t
Input A window 1min

primary

nowA) Single window job

t
Input E

Input D

window 3min primary

window 3min

nowD) Double window job

t
Input B

window 1min
primary

Input B window 3min

nowB) Sliding window job

Input Y
window 1min

delay 1min

t

Input C
window 1min

primary

nowC) Incremental job

output
windowOutput W

output windowOutput Z

Output X output
window

Output Y output
window

Figure 3: Multiple input window definitions possible in DBStreams
Continuous Execution Language (CEL).

reached. The second important keyword for window defi-
nitions in CEL is delay. It can be used to shift a window
into the past by a certain amount of time. For example, if
the internal state of the job is ”2014-11-21 12:20”, a win-
dow of 1 minute would start at minute ”12:19” and end
at ”12:20”. If this window has a delay of 1 minute, given
by the following definition (window 1min delay 1 min),
it would start instead at ”12:18” and end at ”12:19”.

The window definitions visualized in Figure 3 have the
following properties. Part A) shows the simplest possible
window definition, similar to the window definition used in
Algorithm 1. The single input window is also the primary
window of the job. Such jobs are typically used for data
projections, transformations and aggregations.

The window definition shown in part B) is an example of
a sliding window. Since the primary window has a length
of one minute, a task is executed every minute. The second
window has a size of 3 minutes. In consecutive task exe-
cutions, the time slices of the second window will overlap.
An example of such a job is shown in Algorithm 2.

The most complex window definition is shown in part
C). Here, the primary window is used to fetch data from
CT C, whereas the other window is used to make the last
minute of the output CT available as an input to the job.
Such jobs are very useful whenever state information has
to be kept over time. A detailed example of such a job is
given in Algorithm 3.

Part D) shows a double window job. Such jobs are typ-
ically used to merge information from multiple sources,
which provide different parts of the same data, e.g., two
monitoring probes, each monitoring a different part of the
network. Another typical usage scenario is information en-
richment, e.g., one source could contain information about

contacted IP addresses and another source contains Do-
main Name System (DNS) information, i.e., a mapping of
IP addresses to host names. In this situation, a double
window job can be used to combine the two information
sources and produce a new stream containing contacted
host names.

The concept of window definitions in CEL by using pri-
mary windows is, to the best of our knowledge, a novel
feature among stream processing languages. Other stream
processing systems use different approaches to define win-
dows and especially sliding windows. For instance, in the
well known StreamBase [9] system windows are specified
by a size and a slide definition in the following way: [SIZE
x ADVANCE y TIME]. Here, x defines the length of the win-
dow and y the amount of time after which new output is
generated. The window definitions of StreamBase need
the definition of a separate join statement if more than
one stream should be used.

Another important improvement of the DBStream sys-
tem over typical stream processing systems is that data
is stored on disk after each task execution. Therefore, the
state of all running jobs is always persisted to disk and can
be recovered directly after a restart of DBStream. This
has three advantages. First, it makes DBStream robust
against hardware failures since no state information is lost
in case of a system crash or even a power outage. Second,
streams can be replayed starting in the past, only limited
by the amount of disk space available for a certain CT.
Third, DBStream can efficiently process jobs accessing in-
formation from a long time in the past, e.g., a job can have
the current day and the same week day one month ago as
inputs.

4.3. Examples

In this section, we explain a rolling window job and a
complex incremental job in full detail, by giving two ex-
haustive examples of incremental data processing jobs.

4.3.1. Rolling Window Average

In this example, we explain how a rolling average calcu-
lation can be implemented in CEL using a sliding window
job.

Algorithm 2 shows a job definition computing the av-
erage of uploaded and downloaded bytes over a sliding or
rolling time window of three minutes. The job has two in-
put windows, where the primary input window B1, along
which processing is advanced, is one minute long. The
sliding or rolling window B3, which is used for the average
calculation in the SQL query, is three minutes long and
uses the same CT as input. Figure 4a visualizes which
parts of the input B are used over a period of four task
executions.

4.3.2. Rolling Active Set

In the last example, we explain complex incremental job,
incrementally computing the set of IP addresses active over
the last hour, updated every minute.

6

-4 now

Stream B
1min

Stream B
1min

Stream B
1min

Stream B
1min

Stream X
1min

Stream X
1min

Stream X
1min

Stream X
1min

-3 -2 -1

Window
3 Window

1

Window
3 Window

1

Window
3 Window

1

Window
3 Window

1

(a) Rolling average over the last 3 minutes, updated every minute.

-4 now

Stream C
1min

Stream C
1min

Stream C
1min

Stream C
1min

Stream Y
1min

Stream Y
1min

Stream Y
1min

Stream Y
1min

-3 -2 -1

Window 1
delay 1

Window 1
delay 1

Window 1
delay 1

Window 1Window 1 Window 1 Window 1

(b) Complex data processing flow for an incremental query.

Figure 4: Time windows for incremental data processing.

Algorithm 2 Sliding window CEL job

<job inputs="B (window 1min primary) as B1,

B (window 3min) as B3"

output="X"

schema="serial_time int4,

avg_download float8,

avg_upload float8" >

<query>

select __STARTTS, avg(download), avg(upload)

from B3

</query>

</job>

Traditional large-scale batch, as well as stream process-
ing systems, offer two different approaches to solve this
problem. One approach is that for every minute, the last
hour is queried and the active set of IP addresses is com-
puted. This approach is similar to the previous example
and can be useful in certain situations, especially if per-
formance is not crucial e.g., on small amounts of data.
Since the same minute of data is scanned over and over
again, 60 times in the given example, this approach can
become very resource intensive if data is large. Another
approach is to keep all unique IP addresses encountered
in the last hour along with a timestamp in memory, rep-
resenting an intermediate state. This approach is very
efficient regarding the processing time, but the active set
has to stay in memory. In case the system is stopped or
crashes due to a hardware failure or power outage, the
in-memory state has to be rebuilt from past data, which
might not be available anymore. In addition, in most Do-
main Specific Languages (DSLs), unlike in CEL, this type
of jobs is not available out-of-the-box. Typically, User De-
fined Functions (UDFs) have to be used for implementing
such behavior.

In the job implementation shown in Algorithm 3, we
show how an incremental job can be used to calculate the
set of IP addresses active over the last hour, updated every

Algorithm 3 Incremental CEL job

<job inputs="C (window 1min primary),

Y (window 1min delay 1min)"

output="Y"

schema="serial_time int4, last int4,

ip inet" >

<query>

select __STARTTS, max(last), ip

from (

select _STARTTS as last, ip from C

group by 1,2 union all

select last, ip from Y

where last <= __STARTTS-60

group by 1,2

) t group by 1,3

</query>

</job>

minute. This is achieved by using the past output of the
job as an input, delayed by one minute. As we show in
Section 5, this approach is much more efficient than the
traditional ones. In addition, such a query stores all in-
termediate state on disk and can therefore be restarted at
any time by just loading one minute of output data.

The input to this query is C which holds the IP addresses
of active terminals. We now want to transform CT C into
a new CT Y which contains for each minute, the distinct
set of IP addresses active in the last hour. Therefore, we
first add a timestamp called last to Y storing the time of
the last activity of an IP address. Next, from the current
minute of C, we generate a new tuple for each unique IP
and set the last activity to the start of the window using
the STARTTS keyword. From the previous minute of the
output stream Y, we select all IP addresses that where
active less then 60 minutes ago. Finally, we merge both
results using the SQL UNION ALL operator and we select
from the result (for each distinct IP address) the current
time, that is the maximum value of the last activity, and

7

the IP itself. This feedback loop allows us to efficiently
compute the set of IP addresses active in the last hour
every minute, without keeping any explicit state informa-
tion. The windows used in this computation are shown in
Figure 4b.

5. Performance Evaluation

In this section, we compare the performance of DB-
Stream to the state-of-the-art Big Data processing frame-
work Spark.

5.1. Spark Overview

Spark is an open-source MapReduce solution proposed
by the UC Berkley AMPLab. It utilizes Resilient Dis-
tributed Datasets (RDDs), i.e., a distributed data abstrac-
tion which allows in-memory operations on large clusters
in a fault-tolerant manner [16]. This approach has been
demonstrated to be particularly efficient [31] enabling both
iterative and interactive applications in Scala, Java and
Python. Moreover, an application does not strictly re-
quire the presence of a Hadoop cluster to take advantage
of Spark. In fact, the system offers a resource manager and
supports different data access mechanisms. However, it is
most commonly used in combination with Hadoop and the
Hadoop Distributed File System (HDFS). Please refer to
[29] for a detailed description of the implementation of the
benchmark described in this section in Spark. Also the
reasons for selecting Spark without the Spark Streaming
extension are given there.

5.2. System Setup and Datasets

We installed Spark on a set of eleven machines with
the following identical hardware: a 6 core XEON E5
2640, 32 GB of RAM and 5 disks of 3 TB each. One of
those eleven machines has been dedicated to DBStream,
recombining 4 of the available disks in a RAID10. We
use PostgreSQL version 9.2.4 as the underlying DBMS.
The remaining 10 machines compose a Hadoop cluster.
The cluster runs Cloudera Distribution Including Apache
Hadoop (CDH) 4.6 with the MapReduce v1 Job Tracker
enabled. On the cluster we also installed Spark v1.0.0 but
we were only able to use the standalone resource manager.

All machines are located within the same rack connected
through a 1Gb/s switch. The rack also contains a 40 TB
Network-Attached Storage (NAS) used to collect histori-
cal data. In particular, in this work we use four, 5 day-
long datasets, each collected at a different vantage point
in a real ISP network from the 3rd to the 7th of February
2014. Each vantage point is instrumented with Tstat [3]
to produce per-flow text log files from monitoring the traf-
fic of more than 20,000 Asymmetric Digital Subscriber
Line (ADSL) households. For each TCP connection, Tstat
reports more than 100 network statistics and generates a
new log file each hour. Overall, each of the four dataset
corresponds to approximately 160 GB of raw data, about

Figure 5: Tstat plus DBStream.

5 times the memory available on a single cluster node. In
total, the four datasets sum up to approximately 650 GB,
which is about twice as large as the total amount of mem-
ory available in the whole cluster. An overview of the setup
along with the locations of some example widely adopted
Internet services is given in Figure 5.

5.3. Job Definition

Based on our experience in the design of network mon-
itoring applications and benchmarks for large-scale data
processing systems, we define a set of 7 jobs that are rep-
resentative of the daily operations we perform on our pro-
duction Hadoop cluster.

Import imports the data into the system from the NAS,
where raw data is stored in files of one hour each.

J1 for every 10 minutes i) map each destination IP
address to its organization name through the Maxmind
Orgname2 database and ii) for each found organization,
compute aggregated traffic statistics, i.e. min/max/avg
Round Trip Time, number of distinct server IP addresses,
total number of uploaded/downloaded bytes.

J2 for every hour, i) compute the organization name-IP
mapping as in J1, ii) collect all data having organization
names related to the Akamai CDN, and iii) compute some
statistics, i.e. min/max/average Round-Trip Time (RTT),
aggregated for the whole Akamai service.

J3 for every hour, i) compute the organization name-IP
mapping as in J1, and ii) select the top 10 organization
names having the highest number of distinct IP addresses
connecting to them.

2The Maxmind Orgname database provides a mapping between
IPs and Organization names; see www.maxmind.com.

8

Import

J1

J4 J5 J6 prepare

J1 perpare

J2 J3

J7 J6

160

10

60 60 60

110

10

1

6060

Figure 6: Job inter-dependencies for the DBStream job implementa-
tion.

J4 for every hour, i) transform the destination IP ad-
dress into a /24 subnet, and ii) select the top 10 /24 sub-
nets having the highest number of flows.

J5 for every minute, for each source IP address, compute
the total number of uploaded/downloaded bytes and the
number of flows.

J6 for every minute, i) find the set of distinct destination
IP addresses, and ii) use it to update the set of IP addresses
that were active over the past 60 minutes.

J7 for every minute, i) compute the total uploaded/-
downloaded bytes for each source IP address, and ii) com-
pute the rolling average over the past 60 minutes.

Overall, these jobs define network statistics related to
Content Delivery Networks (CDNs) and other organiza-
tions (J1 to J4), statistics related to the monitored house-
holds (J5) and two incremental queries (J6 and J7) com-
puting aggregated statistics over rolling sets of IP ad-
dresses.

5.4. DBStream Benchmark Implementation

All queries are implemented in the Continuous Execu-
tion Language (CEL) of DBStream, described in Section 4.
The fact that the output of a job is stored on disk and can
be used as input to another job is exploited to achieve
increased processing performance. Figure 6 shows the re-
sulting job dependencies, where the nodes represent the
jobs and an arrow from e.g., job J1 to J2 means that the
output of J1 is used as input to J2. The number next to
each arrow indicates the size of the input window in min-
utes. For example, in order to compute the results of J6 we
first gather the set of active IP addresses per minute in J6

prepare. Then, J6 uses J6 prepare and its own past out-
put as input for the computation of the next output time
window. This is indicated by the reflexive arrow starting
from and going back into J6. A detailed example of the
used CEL job underlying J6 is given in Section 4.3.2.

5.5. System comparison

In Figure 7, we compare the performance of Spark and
DBStream in terms of makespan3. In DBStream, the total
execution time is measured from the start of the import of
the first hour of data until all jobs finished processing the
last hour of data. For Spark, all jobs were started at the
same time in parallel. We report the total execution time
of the job finishing last, which was J6 in this experiment.
Since for Spark, the import is done before the jobs start
processing the data, we also report the job processing time
plus the time it takes to import the data separately.

For the jobs J1 to J5 Spark offers great performance
and the whole cluster is perfectly able to parallelize the
processing, leading to very good results. Job J6 and J7

although, are not processed very fast. This comes from
two factors: one the one hand, especially J6 can not be
parallelized very well, since data has to be synchronized
and merged in one single node after each minute. On the
other hand, distinct sets have to be computed for which
huge amounts of data have to be moved around in the
reduce phase. Please refer to [29] for the full details of
the performance comparison. In the future, we plan to
evaluate tools like Spotify Luigi4 which are able to store
intermediate results to speed up jobs like J6 and J7 in
Spark.

For DBStream, the execution time increases nearly lin-
early with the number of Vantage Points (VPs) and there-
fore the amount of data to process. In contrast, for Spark
the main factor is the execution time of J6. The total ex-
ecution time does not increase much with more VPs since
multiple instances of J6 run in parallel. Therefore, Spark
is able to utilize its parallel nature better the more jobs are
running, whereas DBStream shows better performance for
incremental jobs. For the one VP case, Spark, running on
a 10 node cluster takes 2.6 times longer than DBStream
running on a single node of the same hardware, to finish
importing and processing the data.

6. Improving Performance with Intelligent
Scheduling

In the setup considered for the performance comparison,
the main bottleneck of the DBStream system is disk I/O.
However, we will show that it is possible to minimize disk
I/O overhead by intelligent tasks scheduling. In this sec-
tion, we give an introduction to a more general scheduling
problem found in disk-based continuous processing sys-
tems executing shared worflows. The automation of the
scheduling presented here is part of future work and a first
step towards this automation has already been published
in [32].

3In operations research, makespan is the total time that has
elapsed from the beginning of a certain project to its end. Here
by makespan we mean the time until all jobs have been completed.

4https://github.com/spotify/luigi

9

1 VP 2 VPs 4 VPs
0

100

200

300

400

500

600

Ex
ec

ut
io

n
Ti

m
e

[m
in

ut
es

]

Spark, 10 nodes, J1J7
Spark, 10 nodes, Import + J1J7
DBStream, 1 node, Import + J1J7

Figure 7: Comparison of DBStream and Spark.

Typically, tasks are scheduled in first-in-first-out (FIFO)
order in DBStream. Since we have set the number of par-
allel tasks to 64, FIFO effectively results in all tasks being
executed as soon as the input data is ready. The effect of
the FIFO scheduling is shown in Figure 8 (top), where each
point in the plot corresponds to the execution of one win-
dow. The x-axis of this figure corresponds to the time after
the start of the experiment at which a certain task finished
execution. The y-axis corresponds to the time when the
data item was created by the vantage point, normalized
to the start of the whole dataset. Since some jobs process
faster than others, in the FIFO case, the time distance be-
tween those jobs increases over the run of the experiment.
The first step is the data import, which not only puts data
onto the disk, but also into the disk cache of the Operat-
ing System (OS). As soon as the difference in progress
of different jobs needing the same input gets too big, the
data of the input drops out of the cache and has to be read
from disk again. This increases the I/O overhead and, at
the same time, decreases the overall system performance
of DBStream.

Let us explain the underlying processes in more detail.
For example, imagine the import has a fixed size of 8 GB
per hour of data and takes 1 minute to finish processing.
Let’s assume as well, that there are only two jobs, A and
B, defined on top of the import, and A needs 1 minute to
process and B 2 minutes. Now we start the experiment
and the first job which can execute is the import which
needs one minute to finish. Then, both jobs A and B start
to process hour 1 and the import starts processing hour 2.
All those three tasks are executed in parallel in DBStream.
After another minute has passed, the import has finished
hour 2 and starts processing hour 3. Job A has finished
hour 1 and now starts processing hour 2. Since the import
and job A have the same processing time, their progress
will only get, in the worst case, one hour apart form each
other.

In the upper example, we defined hour of data to have
the size of 8 GB. In a computer system with 16 GB of RAM

0 100 200 300 400 500 600 700 800 900
Execution Time (minutes)

0

20

40

60

80

100

120

H
ou

rs
 o

f d
at

a
fin

is
he

d

Import
J1
J1 prepare
J2
J3
J4
J5
J6
J6 prepare

0 100 200 300 400 500 600 700 800 900
Execution Time (minutes)

0

20

40

60

80

100

120

H
ou

rs
 o

f d
at

a
fin

is
he

d

Figure 8: DBStream task execution over time for FIFO and Shared
scheduling.

available for disk cache, this will lead to the following situ-
ation. After the import has finished processing hour 1, this
hour automatically is available in the cache from where it
can be used by job A. Since the import and job A never
get more then one hour apart from each other, no data
has to be read from disk twice. In contrast, for job B, the
situation is very different. Since the processing time of job
B is 2 minutes and therefore twice as long as the import,
for every imported hour, the time difference between job B
and the import increases by one hour. Therefore as soon
as this difference gets longer than 2 hours, the imported
data does not fit in the disk cache any more and has to
be fetched from disk again when it is needed by job B.
This results in an increased I/O overhead since data need
to be read from disk multiple times, thus decreasing the
performance of the whole system.

Figure 8 (bottom) shows execution of the same set of
jobs using a ”shared” scheduling strategy. In the ”shared”
case, a new hour is only imported if the difference in time
between the imported hour ti and the hour tj for which
all jobs have finished processing is smaller than x.

ti − tj < x (1)

In this case, data stays in the OS cache and fewer I/O
operations are needed to complete the experiment. By
setting x = 1, we are able to reduce the execution time of
4 VPs by a factor of 45% from 808 minutes to 446 minutes.

7. Experience from NTMA projects

DBStream has been adopted in several research projects
for running a number of NTMA applications. To provide a
concrete example, we report in Section 7.1 several statis-
tics from running DBStream in the network monitoring
project DARWIN4 [33], where it has been used as cen-
tral analysis system. In addition, in Section 8 we present
the M2M TRAffic Classification (MTRAC) approach [34]

10

as one prominent advanced analytics application of DB-
Stream.

Besides these illustrative examples, there exist a number
of NTMA projects, where DBStream has been fruitfully
deployed, which we briefly summarize in the following for
completeness. The authors of [35] describe DBStream as
part of the general architecture for network monitoring en-
visioned in the European FP7 project mPlane [36]. In this
project, DBStream has been integrated with the network
monitoring system Tstat [3] to store the data it generates.
Those data are then processed by analysis modules as de-
scribed in detail in [37].

In [38] several performance impairments of the CDNs
hosting Facebook and YouTube are analyzed using DB-
Stream. An early study of performance degradations in
YouTube is given in [39], which was later further detailed
in [40]. Classification of HTTP traffic have been conducted
in [41] and [42] using TicketDB [43], the predecessor sys-
tem of DBStream. Most recently a characterization of the
well-known Whatsapp chat service was studied in [44] us-
ing DBStream.

These examples show how easily DBStream can be de-
ployed and instrumented to run diverse network traffic
monitoring and analysis applications.

7.1. Operating DBStream at Scale

In this section, we present several statistics gathered
from the DBStream installation operated in the Austrian
nationally funded DARWIN4 [33] project. Those statistics
give an overview of the scale at which DBStream can be
operated although it is based on a classical database sys-
tem and not the Hadoop stack. The focus of the project
was on the development of innovative methods for i) de-
tecting congestion in 2G/3G/4G mobile cellular network
signalling capacity, ii) anomalies induced by macroscopic
attacks, iii) malfunction of network equipment, as well as
iv) the detection of highly synchronised M2M devices.

In the DARWIN4 project, many different data sources
have been used, ranging from in-network passive probes
to logs from the core network devices. Therefore, DB-
Stream has been operated with several import modules.
In particular, the project relied on the network monitor-
ing system Measurement and Traffic Analysis in Wireless
Networks (METAWIN) [45], tailored for passively mon-
itoring operational mobile networks and capable of mon-
itoring all links in the core of a Third Generation (3G)
network. Figure 9 shows the setup when the monitoring
system is connected to the Gn interface.

DBStream was successfully used to identify and analyze
multiple network anomalies and to run many continuous
analysis tasks in parallel. In fact, it has been used as
the main analysis system in the project, and was the base
for a near real-time alarming system relying on the avail-
ability of aggregate traffic statistics. Unfortunately, due
to the non disclosure agreement constraints with the net-
work operator, we are not allowed to present further details

Figure 9: Simplified overview of a 3G network including a monitoring
system, e.g., METAWIN, and the data export to DBStream.

about the applications running on top of DBStream in the
DARWIN4 with the exception of the MTRAC approach
presented in Section 8. Therefore, we report here several
statistics about the general performance of DBStream.

DBStream was installed on a high performance server
machine, hosting four AMD 6380 CPUs, running at 2.5
GHz. Each CPU houses 16 cores, resulting in a total of
64 cores. In total, we installed 256 GB of RAM. The disk
subsystem in it’s final state consists of four fiber-channel
attached RAID arrays, each with 12x 2TB disks forming
a RAID10. In addition, the 24 internal disks are split
into two disks for the OS, running a RAID1, the other 22x
2TB disks form a large RAID6. All disks except those used
for the OS are PostgreSQL tables spaces and are used by
DBStream to store imported data and analysis results. To
date, the DBStream installation operated in DARWIN4 is
the largest one we are aware about.

In total, DBStream was operated for 385 days. On the
final day of operation, the table partitioning resulted in
984,000 tables. Notice that this is a very high number of
tables, considering that most databases use several hun-
dreds and a typical database administrator knows most of
them by name. Those tables stored a total of 67 TB of net-
work monitoring data and processing results. Please note
that these statistics, as well as the number of tables, are
only a snapshot and include only those tables and amounts
of data which were not already deleted by the DBStream
retention module.

In total, over the whole run time, 9.482 million DB-
Stream tasks (each corresponding to a PostgreSQL query)
were executed. That is, on average, each 3.5 seconds a
new task, updating a time window, was executed. Those
tasks produced a total of 1.999 trillion result rows. Please
note that in the current version of DBStream it is not
possible to track the number of rows imported into DB-
Stream, therefore this number should be considered as a
lower bound and the actual number might be more than
twice as high.

11

8. MTRAC - M2M Traffic Classification

In this Section we describe the MTRAC as one of the
most important applications of DBStream not under Non-
Disclosure Agreement (NDA) constraints.

Machine-to-Machine (M2M) traffic has become a ma-
jor share of today’s mobile networks and will grow even
further in the near future. The quickly increasing num-
ber of M2M devices introduces unprecedented traffic pat-
terns and fosters the interest of mobile operators, who
whish to discover and track those devices in their net-
works. MTRAC enables the discovery of M2M devices
relying on the analysis of coarse-grained network statistics
by applying several different ML algorithms. Notice, that
the use of very simple traffic descriptors makes MTRAC
robust against traffic encryption techniques, and improve
its portability to other types of networks or usage sce-
narios. We have designed and implemented MTRAC on
top of DBStream using data from the network monitor-
ing system METAWIN. Utilizing DBStream allowed us
to classify M2M devices in near real time, using different
time and session based network traffic aggregation meth-
ods. We report the performance of MTRAC for online
classification of more than two months of traffic observed
in an operational, nationwide mobile network.

8.1. Obtaining Network Descriptors from METAWIN

In the considered setup, the METAWIN monitoring sys-
tem is connected to the Gn interface (see Figure 9). At this
interface data from large parts of the network are concen-
trated, making it a suitable vantage point for network-wide
analysis. In the METAWIN system, data is first captured
at line-speed at the monitoring probe, equipped with one
or more Endace capture cards [46]. Still on the monitor-
ing probe, aggregations are generated for certain proto-
cols, e.g., Transmission Control Protocol (TCP), Hyper-
text Transfer Protocol (HTTP) or DNS without applying
any packet sampling. For MTRAC, network statistics ag-
gregated at short time intervals in the minute range are
used. Those network statistics are buffered locally on
the monitoring probe using RAID arrays for optimized
I/O. Finally, the statistics are fetched by the separate
DBStream server and imported into the underlying Post-
grSQL database.

8.2. DBStream Weka Integration

To enable online classification based on ML algorithms
in DBStream, we added a new module able to interface
DBStream with Weka [47]. Weka is a collection of ma-
chine learning algorithms for data mining tasks, and con-
tains tools for data pre-processing, classification, regres-
sion, clustering, association rules, and visualization. It
is also well-suited for developing new machine learning
schemes.

The developed module enables users to write DBStream
jobs which take a table of feature vectors as input and out-
put a new table containing the classification results. This

is achieved by the application of classification models, pre-
viously trained using Weka, to the table of feature vectors.
This module can be used for any classification purpose.
Generally speaking, Weka is instrumented to classify an
exported time window of data use the pre-trained model.
Then, the classification results are imported back into DB-
Stream. As soon as the time window is imported, it be-
comes available to other DBStream jobs for further pro-
cessing or visualization. Since the module is executed as
a DBStream job, the DBStream scheduler automatically
takes care of executing it for each new window of data.

8.3. TAC-based Ground Truth

Supervised classifiers need to be trained on a dataset
containing the real class of the devices, i.e., the ground
truth. Getting access to such labeled datasets is generally
a very cumbersome process, especially in the case of an
operational network. One standard approach followed by
mobile network operators to identify a M2M device is by
its hardware model [27], which can be obtained from its
Type Allocation Code (TAC), using the TAC databases of
the GSM Association. The hardware model information is
generally complemented with cellular operator templates
which provide a categorization of M2M devices, based on
the device type (e.g., laptop, modem, POS, router, teleme-
try, etc.)5. This TAC-based approach imposes several lim-
itations to the classification and discovery of M2M devices,
such as: i) the need of manual gathering of TAC informa-
tion whenever new devices appear in the network, and ii)
incompleteness of the available TAC databases. We then
train classifiers using only those devices for which the real
class is known. Finally, this ground truth has been used
to compute the accuracy of the different ML algorithms in
terms of True Positive (TP) and the False Positive (FP)
ratios.

8.3.1. Online M2M Classification

In this section, we show how the features described in
detail in [34] are used by MTRAC to identify M2M devices
in the operational mobile network of a European Internet
Service Provider (ISP). The features extracted form the
session data of each device are stored along with the cor-
responding ground truth of the device, obtained by the
TAC-based approach of Section 8.3. Part of these data are
used to build the ML-based classification models, training
different classifiers using Weka. The trained models are fi-
nally installed into DBStream, and used in an online basis
to assign a class to each of the monitored devices. Re-
call that our classification problem is a dichotomic one, in
which a device is either classified as M2M or non M2M.
As discussed in detail in Section 8.3.3, we use multiple
ML-based approaches to improve the classification perfor-
mance of MTRAC.

5For example, the AT&T specialty vertical devices tem-
plate at http://www.rfwel.com/support/hw-support/ATT_

SpecialtyVerticalDevices.pdf.

12

8.3.2. Aggregating Sessions per Device

The main challenge when aggregating sessions per de-
vice is to find a timing which still leads to results in an
acceptable short time, but gathers enough data to achieve
good classification results. In an offline setting, one can
aggregate all sessions per device available in the whole
dataset and select only those devices which meet certain
criteria to perform the classification. For example, one
might restrict the classification only to those devices for
which a minimum amount of at least N sessions have been
observed. In contrast, in an operational online setting, the
dataset does not have a defined end. On the one hand, the
amount of sessions used as input to the aggregation should
be as high as possible. For example, features based on the
session inter-arrival time can only be generated if more
than one session is available and many statistical features
benefit from more input data. On the other hand, the
time it takes until the classification results are available
should be as short as possible, thus reducing the number
of sessions available in the aggregation period. As shown
in Section 8.3.3, the classification performance increases
with the number of aggregated sessions. Therefore, the
user of such a system is facing an interesting discrepancy.
She can either wait longer time until more sessions are
available for aggregation and gain a higher classification
performance, or receive the results earlier and accept the
resulting lower classification performance.

We implemented two different session aggregation ap-
proaches to visualize this trade off. The first approach is
called Simple Daily Aggregation (SDA) and is based
on time, meaning that we execute the aggregation from
sessions to feature vectors, e.g., after 1, 2, ..., N days.
The second approach, called Threshold Based Aggre-
gation (TBA), is based on the number of sessions ob-
served per device. The TBA approach is implemented us-
ing a rolling DBStream job (please refer to Section 4.3 for
an example of rolling/incremental DBStream jobs). The
job starts from a table A containing all sessions from all
devices as they are produced. We now want to produce a
new table B in which all sessions are kept, until at least S
sessions for a single device have been gathered. For sim-
plicity, let us assume we update B only once a day. A
new time window of B is thus created by the union over
all sessions of the current day stored in A, plus all sessions
of all devices from the last time window of B which have
not reached S sessions yet. The result is that a session is
moved from the old to the new time window of B, until
there are S sessions available for that device. The session
aggregation can now be applied on those devices of B, hav-
ing at least S sessions and is stored in a new DBStream
CT.

8.3.3. Evaluation of Classification Accuracy

We have evaluated six different ML algorithms.
Decision Stump is a decision tree algorithm generating
trees of only one level, therefore only a single feature is
used to decide to which class a device belongs.

0 10 20 30 40 50 60 70
Days since start

0.0

0.1

0.2

0.3

0.4

0.5

0.6

FP
 R

at
io

Decision Stump
Hoeffding Tree

J48
Naive Bays

Random Forrest

Figure 10: FPR per day for selected classifiers.

0 10 20 30 40 50 60 70
Days since start

0.0

0.1

0.2

0.3

0.4

F
ra

ct
io

n
of

 M
2M

S>0

S>10

S>160

S>20

S>40

S>5

S>80

Figure 11: Fraction of M2M devices

J48 is an implementation of the well-known C4.5 decision
tree learner provided by the Weka toolkit.
Random Forest trains an ensemble of decision tree learn-
ers, each on a randomly selected subset of the given fea-
tures using bootstrapping to generate unique sample sub-
sets for each tree.
Hoeffding Tree is a special decision tree learning algo-
rithm. It produces classification models quickly, which can
be updated dynamically as soon as new items arrive.
Naive Bayes is a statistical classifier based on Bayes’ the-
orem with a strong (naive) assumption that each feature
is independent from each other feature.
SVM is a non-probabilistic binary classifier. Support Vec-
tor Machines (SVMs) typically provide high classification
performance at the cost of long training phases.

In Figure 10, we compare the FPR achieved by differ-
ent classification algorithms, aggregating device sessions
through the 10 session TBA approach. The days two to
eight are used as a training set, therefore this period shows
a decreased FPR, most prominent for the random forest
algorithm. In this classification problem, complex tree al-
gorithms like the Hoeffding, J48 and random forest achieve
the lowest FPRs. The best performance is achieved by the
random forest algorithm, at the cost of a very long train-
ing lasting several hours. The J48 algorithm provides the
best balance between training time and classification per-
formance. Therefore, we have used the J48 algorithm in
the following. We also trained a SVM model, which re-

13

0 10 20 30 40 50 60 70
Days since start

0.05

0.10

0.15

0.20

0.25

0.30

0.35

F
P

 R
at

io

1 day

10 days
14 days

2 days
4 days
7 days

(a) SDA based on different number of days

0 10 20 30 40 50 60 70
Days since start

0.05

0.10

0.15

0.20

0.25

0.30

0.35

F
P

 R
at

io

S>10

S>160

S>20

S>40

S>5

S>80

(b) TBA based on different number sessions (S)

Figure 12: Comparison of our different session aggregation approaches SDA and TBA using a J48 classifier.

sulted in a very low performance classifier, where nearly
all the devices where classified as non M2M.

As shown in Figure 11, the fraction of M2M devices
is small but represents definitely an important share of
the devices in the network, and it further decreased over
weekends. This is likely the main cause for the decrease in
classification performance during weekends, which results
in the spikes of the FPR shown in Figure 10. In fact, the
correct identification of M2M devices becomes harder as
soon as the fraction of M2M devices becomes lower.

In Figure 12, we compare the SDA to the TBA session
aggregation approach, using J48 models in both cases. In
Figuret 12a we show the FPR for the SDA approach, ag-
gregating sessions based on an increasing number of days.
For each aggregation we export the first part, i.e., the
first day, the first two days, etc., as training set for the
J48 classifier. The FPR decreases with longer aggrega-
tion intervals, although aggregation intervals longer than
7 days do not seem to decrease the FPR any further.
Figure 12b shows the classification performance for the
TBA approach. In general, the FPR is lower than for the
SDA. Also here, longer aggregation intervals result in a
decreased FPR, which can get as low as 11.6% in average
for S > 160. In total, the TBA approach performs consid-
erably better for longer aggregation intervals as compared
to the SDA approach.

Finally, it is interesting to analyse how long it takes un-
til a device is classified, especially for the TBA approach.
For this purpose, Figure 13 shows the normalized cumu-
lative amount of devices reaching at least S sessions. The
number of devices with more than S sessions grows slower
for larger thresholds. For example, for the S > 160 TBA
approach, even after an investigation period of more than
two months, only 33.8% of devices pass this threshold.

9. Conclusion and Future Work

In this paper, we presented DBStream, a Data Stream
Warehouse (DSW) tailored for, but not limited to, Net-
work Traffic Monitoring and Analysis (NTMA) applica-
tions. We have shown, that if instrumented correctly, a

0 10 20 30 40 50 60 70
Days since start

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f
D

ev
ic

es

S>0

S>10

S>160

S>20

S>40

S>5

S>80

Figure 13: Cumulative ratio of classified devices

PostgreSQL database engine can process large amounts of
data in a fast and efficient way.

In a performance study, we demonstrated that a single-
node instance of DBStream can outperform a cluster of 10
Spark nodes by a factor of 2.6, running the same query
workload on the same dataset.

The flexibility of DBStream was presented in another
application, where it was instrumented to run multiple
complex machine learning tasks. The resulting MTRAC
approach, based only on the analysis of coarse-grained net-
work descriptors, shows a very high accuracy for the con-
tinuous classification of M2M devices in a 3G mobile net-
work.

The current design of DBStream is the result of its us-
age for several NTMA applications and its deployment in a
mobile operational network. This experience allowed us to
derive useful insights on how to improve the system to offer
increased performance and higher flexibility at the same
time. Although current results indicate that DBStream
is already very much suited system for typical network
monitoring applications, some technical challenges and in-
teresting research questions remain to be solved. For ex-
ample, we want to investigate the possibility of extending
DBStream by replacing the database engine PostgreSQL
with either the parallel database system Greenplum [48],
or a MapReduce based large-scale data processing frame-
work like, e.g., Spark [16]. Indeed, this would be a logical
extension of the current single machine DBStream archi-

14

tecture to a cluster system, thus enabling scale-out prop-
erties found in modern big data processing frameworks.

Furthermore, we have deployed DBStream in the intelli-
gent transportation systems domain, and plan its adoption
also in other application domains with similar properties
such as smart grid and smart city. In fact, data from those
application domains has similar properties. Data arrive as
high volume data streams and the analytic questions can
be addressed utilizing DBStreams CEL language. Prelimi-
nary results show that DBStream can be used to store and
analyze data from those domains as successfully as from
computer networks.

10. Acknowledgments

The research leading to these results has received
funding from the Vienna Science and Technology Fund
(WWTF) through project ICT15-129, ”BigDAMA”, and
from the European Union under the FP7 Grant Agree-
ment n. 318627, “mPlane” project. The work has been
partially performed within the framework of the projects
Darwin 4 and N-0 at the Telecommunications Research
Center Vienna (FTW), and has been partially funded by
the Austrian Government and the City of Vienna through
the program COMET. We would like to thank the anony-
mous reviewers for their detailed comments and sugges-
tions, which helped us to significantly improve the quality
of the paper.

References

[1] F. Ricciato, Traffic monitoring and analysis for the optimization
of a 3g network, IEEE Wireless Commun. 13 (6) (2006) 42–49.
URL http://dx.doi.org/10.1109/MWC.2006.275197

[2] K. Keys, D. Moore, R. Koga, E. Lagache, M. Tesch, k. claffy,
The architecture of CoralReef: an Internet traffic monitoring
software suite, in: Passive and Active Network Measurement
Workshop (PAM), RIPE NCC, Amsterdam, Netherlands, 2001.

[3] A. Finamore, M. Mellia, M. Meo, M. M. Munafò, P. D. Torino,
D. Rossi, Experiences of internet traffic monitoring with Tstat,
IEEE Network 25 (3) (2011) 8–14.
URL http://dx.doi.org/10.1109/MNET.2011.5772055

[4] F. Fusco, L. Deri, High speed network traffic analysis with com-
modity multi-core systems, in: Proceedings of the 10th ACM
SIGCOMM Conference on Internet Measurement 2010, Mel-
bourne, Australia - November 1-3, 2010, 2010, pp. 218–224.
URL http://doi.acm.org/10.1145/1879141.1879169

[5] M. Stonebraker, Sql databases v. nosql databases, Commun.
ACM 53 (4) (2010) 10–11.
URL http://doi.acm.org/10.1145/1721654.1721659

[6] C. D. Cranor, T. Johnson, O. Spatscheck, V. Shkapenyuk, Gi-
gascope: A stream database for network applications, in: Pro-
ceedings of the 2003 ACM SIGMOD International Conference
on Management of Data, San Diego, California, USA, June 9-
12, 2003, 2003, pp. 647–651.
URL http://doi.acm.org/10.1145/872757.872838

[7] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Con-
vey, S. Lee, M. Stonebraker, N. Tatbul, S. B. Zdonik, Aurora:
a new model and architecture for data stream management,
VLDB J. 12 (2) (2003) 120–139. doi:10.1007/s00778-003-0095-
z.
URL http://dx.doi.org/10.1007/s00778-003-0095-z

[8] EsperTech Inc., Esper: Event processing for java (2015).
URL http://www.espertech.com/products/esper.php

[9] StreamBase Inc., Streambase: Real-time, low latency data pro-
cessing with a stream processing engine. (2014).
URL http://www.streambase.com

[10] E. Liarou, S. Idreos, S. Manegold, M. L. Kersten, Monet-
db/datacell: Online analytics in a streaming column-store,
PVLDB 5 (12) (2012) 1910–1913.
URL http://vldb.org/pvldb/vol5/p1910_eriettaliarou_

vldb2012.pdf

[11] L. Golab, T. Johnson, S. Sen, J. Yates, A sequence-oriented
stream warehouse paradigm for network monitoring applica-
tions, in: Passive and Active Measurement - 13th International
Conference, PAM 2012, Vienna, Austria, March 12-14th, 2012.
Proceedings, 2012, pp. 53–63.
URL http://dx.doi.org/10.1007/978-3-642-28537-0_6

[12] J. Dean, S. Ghemawat, Mapreduce: simplified data processing
on large clusters, Commun. ACM 51 (1) (2008) 107–113.
URL http://doi.acm.org/10.1145/1327452.1327492

[13] T. White, Hadoop: the definitive guide, O’Reilly, 2012.
[14] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. An-

thony, H. Liu, P. Wyckoff, R. Murthy, Hive - A warehousing
solution over a map-reduce framework, PVLDB 2 (2) (2009)
1626–1629.
URL http://www.vldb.org/pvldb/2/vldb09-938.pdf

[15] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar,
M. Tolton, T. Vassilakis, Dremel: Interactive analysis of web-
scale datasets, PVLDB 3 (1) (2010) 330–339.
URL http://www.comp.nus.edu.sg/~vldb2010/proceedings/

files/papers/R29.pdf

[16] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker,
I. Stoica, Spark: Cluster computing with working sets, in:
2nd USENIX Workshop on Hot Topics in Cloud Computing,
HotCloud’10, Boston, MA, USA, June 22, 2010, 2010.
URL https://www.usenix.org/conference/hotcloud-

10/spark-cluster-computing-working-sets

[17] W. Lam, L. Liu, S. Prasad, A. Rajaraman, Z. Vacheri, A. Doan,
Muppet: Mapreduce-style processing of fast data, PVLDB
5 (12) (2012) 1814–1825.
URL http://vldb.org/pvldb/vol5/p1814_wanglam_vldb2012.

pdf

[18] B. Li, E. Mazur, Y. Diao, A. McGregor, P. J. Shenoy, SCALLA:
A platform for scalable one-pass analytics using mapreduce,
ACM Trans. Database Syst. 37 (4) (2012) 27.
URL http://doi.acm.org/10.1145/2389241.2389246

[19] M. Zaharia, T. Das, H. Li, S. Shenker, I. Stoica, Discretized
streams: An efficient and fault-tolerant model for stream
processing on large clusters, in: 4th USENIX Workshop on Hot
Topics in Cloud Computing, HotCloud’12, Boston, MA, USA,
June 12-13, 2012, 2012.
URL https://www.usenix.org/conference/hotcloud12/

workshop-program/presentation/zaharia

[20] A. Dainotti, A. Pescapè, K. C. Claffy, Issues and future direc-
tions in traffic classification, IEEE Network 26 (1) (2012) 35–40.
URL http://dx.doi.org/10.1109/MNET.2012.6135854

[21] S. Valenti, D. Rossi, A. Dainotti, A. Pescapè, A. Finamore,
M. Mellia, Reviewing traffic classification, in: Data Traffic Mon-
itoring and Analysis, Springer Berlin Heidelberg, 2013, pp. 123–
147.

[22] E. Schikuta, Grid-clustering: an efficient hierarchical clus-
tering method for very large data sets, in: 13th Inter-
national Conference on Pattern Recognition, ICPR 1996,
Vienna, Austria, 25-19 August, 1996, 1996, pp. 101–105.
doi:10.1109/ICPR.1996.546732.
URL http://dx.doi.org/10.1109/ICPR.1996.546732

[23] E. Schikuta, M. Erhart, The bang-clustering system: Grid-
based data analysis, in: Advances in Intelligent Data Analy-
sis, Reasoning about Data, Second International Symposium,
IDA-97, London, UK, August 4-6, 1997, Proceedings, 1997, pp.
513–524.

[24] T. T. T. Nguyen, G. J. Armitage, A survey of techniques for

15

internet traffic classification using machine learning, IEEE Com-
munications Surveys and Tutorials 10 (1-4) (2008) 56–76.
URL http://dx.doi.org/10.1109/SURV.2008.080406

[25] P. Fiadino, A. Bär, P. Casas, HTTPTag: A flexible on-line http
classification system for operational 3g networks, in: Proceed-
ings of IEEE Infocom 2013, Turin, Italy, 2013.

[26] I. Bermudez, M. Mellia, M. M. Munafò, R. Keralapura,
A. Nucci, DNS to the rescue: discerning content and services
in a tangled web, in: Proceedings of the 12th ACM SIGCOMM
Conference on Internet Measurement, IMC ’12, Boston, MA,
USA, November 14-16, 2012, 2012, pp. 413–426.
URL http://doi.acm.org/10.1145/2398776.2398819

[27] M. Z. Shafiq, L. Ji, A. X. Liu, J. Pang, J. Wang, A first
look at cellular machine-to-machine traffic: large scale mea-
surement and characterization, in: ACM SIGMETRICS/PER-
FORMANCE Joint International Conference on Measurement
and Modeling of Computer Systems, SIGMETRICS ’12, Lon-
don, United Kingdom, June 11-15, 2012, 2012, pp. 65–76.
URL http://doi.acm.org/10.1145/2254756.2254767

[28] N. Dindar, N. Tatbul, R. J. Miller, L. M. Haas, I. Botan, Mod-
eling the execution semantics of stream processing engines with
SECRET, VLDB J. 22 (4) (2013) 421–446.
URL http://dx.doi.org/10.1007/s00778-012-0297-3

[29] A. Baer, A. Finamore, P. Casas, L. Golab, M. Mellia,
Large-scale network traffic monitoring with DBStream, a sys-
tem for rolling big data analysis, in: 2014 IEEE Interna-
tional Conference on Big Data, Big Data 2014, Washing-
ton, DC, USA, October 27-30, 2014, 2014, pp. 165–170.
doi:10.1109/BigData.2014.7004227.
URL http://dx.doi.org/10.1109/BigData.2014.7004227

[30] B. Claise, G. Sadasivan, V. Valluri, M. Djernaes, RFC 3954:
Cisco systems NetFlow services export version 9 (2004).
URL http://www.ietf.org/rfc/rfc3954.txt

[31] Berkeley AMPLab, Big data benchmark (2014).
URL https://amplab.cs.berkeley.edu/benchmark/

[32] A. Bär, L. Golab, S. Ruehrup, M. Schiavone, P. Casas, Cache-
oblivious scheduling of shared workloads, in: IEEE 31th In-
ternational Conference on Data Engineering ICDE 2015, April
13-17 2015, Seoul, South Korea, to appear, 2015.

[33] The Telecommunications Research Center Vienna (FTW),
Data Analysis and Reporting for Wireless Networks (DAR-
WIN4) (2014).
URL http://www.ftw.at/research-innovation/projects/

darwin-4?set_language=en

[34] A. Baer, P. Svoboda, P. Casas, MTRAC - discovering M2M
devices in cellular networks from coarse-grained measurements,
in: 2015 IEEE International Conference on Communications,
ICC 2015, London, United Kingdom, June 8-12, 2015, 2015,
pp. 667–672. doi:10.1109/ICC.2015.7248398.
URL http://dx.doi.org/10.1109/ICC.2015.7248398

[35] B. Trammell, P. Casas, D. Rossi, A. Baer, Z. Ben-
Houidi, I. Leontiadis, T. Szemethy, M. Mellia, mplane:
an intelligent measurement plane for the internet,
IEEE Communications Magazine 52 (5) (2014) 148–156.
doi:10.1109/MCOM.2014.6815906.
URL http://dx.doi.org/10.1109/MCOM.2014.6815906

[36] mPlane Consortium (project FP7-ICT-318627), mPlane - an
Intelligent Measurement Plane for Future Network and Appli-
cation Management, http://www.ict-mplane.eu/ (2015).

[37] mPlane Consortium (project FP7-ICT-318627), Final Imple-
mentation and Evaluation of the Data Processing and Storage
Layer, www.ict-mplane.eu/sites/default/files//public/

public-page/public-deliverables//1187mplane-d34.pdf

(2015).
[38] P. Fiadino, A. D’Alconzo, A. Baer, A. Finamore, P. Casas,

On the detection of network traffic anomalies in content de-
livery network services, in: 2014 26th International Teletraffic
Congress (ITC), Karlskrona, Sweden, September 9-11, 2014,
2014, pp. 1–9. doi:10.1109/ITC.2014.6932930.
URL http://dx.doi.org/10.1109/ITC.2014.6932930

[39] P. Casas, A. D’Alconzo, P. Fiadino, A. Baer, A. Finamore,

On the analysis of qoe-based performance degradation in
youtube traffic, in: 10th International Conference on Net-
work and Service Management, CNSM 2014 and Workshop,
Rio de Janeiro, Brazil, November 17-21, 2014, 2014, pp. 1–9.
doi:10.1109/CNSM.2014.7014135.
URL http://dx.doi.org/10.1109/CNSM.2014.7014135

[40] P. Casas, A. D’Alconzo, P. Fiadino, A. Baer, A. Finamore,
T. Zseby, When youtube does not work - analysis of qoe-relevant
degradation in google CDN traffic, IEEE Transactions on Net-
work and Service Management 11 (4) (2014) 441–457.
URL http://dx.doi.org/10.1109/TNSM.2014.2377691

[41] P. Casas, P. Fiadino, A. Baer, Understanding HTTP traffic and
CDN behavior from the eyes of a mobile ISP, in: Passive and Ac-
tive Measurement - 15th International Conference, PAM 2014,
Los Angeles, CA, USA, March 10-11, 2014, Proceedings, 2014,
pp. 268–271.

[42] P. Casas, P. Fiadino, A. Baer, IP mining: Extracting
knowledge from the dynamics of the internet addressing
space, in: 25th International Teletraffic Congress, ITC 2013,
Shanghai, China, September 10-12, 2013, 2013, pp. 1–9.
doi:10.1109/ITC.2013.6662933.
URL http://dx.doi.org/10.1109/ITC.2013.6662933

[43] A. Bär, A. Barbuzzi, P. Michiardi, F. Ricciato, Two parallel ap-
proaches to network data analysis, in: 5th Workshop on Large
Scale Distributed Systems and Middleware (LADIS) 2011, Seat-
tle, USA, 2011.
URL http://www.eurecom.fr/publication/3463

[44] P. Fiadino, M. Schiavone, P. Casas, Vivisecting WhatsApp in
Cellular Networks: Servers, Flows, and Quality of Experience,
in: M. Steiner, P. Barlet-Ros, O. Bonaventure (Eds.), Traf-
fic Monitoring and Analysis (TMA), Barcelona, Spain, LNCS,
2015.

[45] F. Ricciato, P. Svoboda, J. Motz, W. Fleischer, M. Sed-
lak, M. Karner, R. Pilz, P. Romirer-Maierhofer, E. Hasenlei-
thner, W. Jäger, Traffic monitoring and analysis in 3g net-
works: lessons learned from the METAWIN project, Elek-
trotechnik und Informationstechnik 123 (7-8) (2006) 288–296.
doi:10.1007/s00502-006-0362-y.

[46] Emulex, Endace dag cards - 100% packet capture guaranteed -
high speed packet capture, any network interface. (2015).
URL http://www.emulex.com/products/network-visibility-

products-and-services/endacedag-data-capture-

cards/features/

[47] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer,
Peter Reutemann, Ian H. Witten, The WEKA Data Mining
Software: An Update, in: SIGKDD Explorations, Vol. 11, Issue
1, 2009.

[48] Pivotal Software, Inc., Pivotal greenplum database - enable
analytic innovation (2015).
URL http://www.gopivotal.com/big-data/pivotal-

greenplum-database

16

