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ABSTRACT

We study the problem of predicting Internet path changes
and path performance using traceroute and machine-
learning techniques. Path changes are frequently linked
to path inflation and performance degradation. There-
fore, predicting their occurrence could improve the anal-
ysis of path dynamics using traceroute. By relying on
neural networks and using empirical distribution based
input features, we show that we are able to predict
(i) the remaining life time of a path before it actually
changes, and (ii) the number of path changes in a cer-
tain time slot with relatively high accuracy. We also
show that it is possible to predict path performance in
terms of latency, opening the door to novel, machine-
learning-based approaches for RTT prediction.

1. INTRODUCTION

Analyzing the performance of a certain path through
active measurements requires to regularly measure or
“sample”the path, by periodically launching traceroutes
to retrieve relevant metrics. However, there is a con-
straint in how often measurements are performed, trad-
ing the accuracy of the analysis with the probing re-
source budget. As such, monitoring a large number
of Internet paths through active measurements requires
some smart ways to allocate a pre-defined probing bud-
get. Internet paths change frequently due to inter/intra-
domain routing changes, load balancing and even fail-
ures. Some of these changes can seriously disrupt per-
formance, causing longer round-trip times, congestion,
or even loss of connectivity [1]. For example, in [2],
Google reports that inter-domain routing changes caused
more than 40% of the cases in which clients experienced
a latency increase of at least 100ms. We are currently
extending our tool DisNETPerf [3] by adding an auto-
matic approach to dynamically adapt the sampling rate
of a path based on the remaining time until a next path
change. In this paper, and similar to [4, 5], we propose
to build a learning system which will be able to pre-
dict those path changes, relying on supervised machine
learning algorithms. In addition, we explore the possi-
bility of using the same approach to also predict path
performance metrics such as RTT.

2. PREDICTING PATH DYNAMICS

Let us first introduce some basic definitions to formu-
late the corresponding learning and prediction problem.
We define a path P as a sequence of links connecting a
certain fixed source s to a fixed destination d. At any
time t, path P (t) is realized by a specific route r: this
route consists of a specific sequence of links connect-
ing s to d, and has an associated initial time t0 when
the route becomes active or in-place, and a final time
tf which corresponds to the time when r switches to
another route realization, i.e., when the actual route
changes. As such, a path P (t) can be considered as
a statistical time process, composed of a set of time-
contiguous routes ri(t

i
0
, tif ), each one with a duration

D(ri) = tif − ti
0
, and with a total number of route

changes rcP = i − 1. We additionally define the du-
ration of a route r as D(r) = tf − t0, its current life
time at time t as Lr(t) = t − t0, and its remaining life
time at time t as Rr(t) = tf − t. In our prediction prob-
lem, we want to estimate, at every time t, the remain-
ing life time Rr(t) of route r, namely R̂r(t). As such,

when R̂r(t) becomes closer to 0, we would increase the
sampling rate to better monitor the path performance
in the event of a route change. In addition, we also
want to predict – at every time t – the number of route
changes a path experiences over a specific time win-
dow of length T , namely r̂cPT

(t), which would allow to
dynamically identify which paths are more prone to fre-
quent changes. Besides path dynamics, we are also in-
terested in predicting path performance, so we propose
to predict the average RTT of a path at every time t,
namely ˆRTTP (t).
To perform these estimations on a given path P at

time t, we use as input a very rich set of features describ-
ing the statistical properties of the route duration D(r)
of P , its total number of route changes rcP , the num-
ber of route changes rcPT

for the target time window
of length T , the current life time of the active route
Lr(t), as well as RTT, all of them computed on top
of traceroute measurements. Note that we compute
all these features by sampling their empirical distribu-
tions at multiple percentiles, assuming a predefined ob-
servation time Tlearn of the monitored paths, during
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(t). (c) ˆRTTP (t) vs. RTTP (t). (d) Prediction relative error.

Figure 1: Real and predicted values.

which we collect these statistics for learning purposes.
A worth-mentioning observation is that the set of fea-
tures we are considering in this work is richer in terms
of statistical properties than the one considered in pre-
vious work [4, 5], as, in particular, we are using as input
empirical distributions and not only single metric val-
ues. Finally, we build a predictor based on neural net-
works, as these have shown good learning performance
in a large number of applications. More precisely, we
consider a standard multi-layer perceptron (MLP) re-
gressor.

3. PRELIMINARY RESULTS – M-LAB

We study the performance of the proposed predic-
tor, analyzing a full week of Paris traceroute mea-
surements performed through M-Lab. The dataset cor-
responds to the first week of January 2016. During this
week, we observe more than 450,000 different paths,
sampled through Paris traceroute measurements from
more than 100 geo-distributed servers. Unfortunately,
not all of these paths are periodically sampled dur-
ing this week; indeed, when analyzing the number of
traceroute measurements for each of these paths, we
found that only 15.725 paths have been sampled more
than 10 times, and only 2346 paths have at least 100
traceroute associated measurements during the ana-
lyzed week. We use 100 as threshold to avoid reduc-
ing the useful dataset even more. Nevertheless, the
more traceroutemeasurements we have for a path, the
higher visibility on potential route changes. Having 100
samples in a week means a minimum path sampling rate
of one traceroute every 100 minutes. For each of these
2346 paths P , we compute the distribution of the afore-
mentioned input features during an observation period
Tlearn = 1 week. Note that while we use the full week
of measurements to compute the input features of our
predictor, performed evaluations are done on a 10-fold
cross-validation basis, to avoid biased results. A large
fraction of paths are rather stable, with about 40% of
the observed routes lasting more than one hour, and
with about 40% of the paths showing no path changes
during the whole week. There is also an important share
of dynamic paths, and in fact more than 30% of them
have at least 20 route changes during the week, with
routes lasting only a couple of minutes.

Figures 1(a), 1(b) and 1(c) report the obtained pre-

diction results for R̂r(t), r̂cPT
(t) and ˆRTTP (t) respec-

tively. We take T = 24 hours, meaning that we are in-
terested in predicting the daily number of route changes
of a path. Before commenting on the results, it is worth
mentioning that previous work [4, 5] trying to predict
Rr(t) using traceroute data has already acknowledged
that providing high prediction accuracy is very challeng-
ing. The figures plot both the real value of the corre-
sponding metric as well as the predicted value, for the
complete set of more than 350,000 traceroute mea-
surements. Results are normalized to the maximum of
each metric observed in Tlearn. The straight line repre-
sents the ideal prediction scenario, in which X̂ = X.
The first observation in the three scenarios is that the

correlation between predicted and real values are very
high. Indeed, most of the values lie around the diag-
onal, and the computed correlation factors are always
above 0.9. However, it is clear that the predictor results
in important errors, especially for Rr(t), both by under-
estimating as well as overestimating the real values. A
second observation is that errors are higher for smaller
values of Rr(t) as well as for bigger values of RTTP (t),
as they denote highly dynamic paths.

Figure 1(d) depicts the distribution of the relative

prediction errors, defined as
|X−X̂|

X
× 100 (note that we

consider the absolute prediction error when a sample
X = 0). The relative prediction error for Rr(t) is above
50% for about 60% of the samples, confirming the chal-
lenges already found in [4, 5] to predict the residual
life time of a route. However, results are much more
encouraging when considering the prediction of rcPT

(t)
and the prediction of the average RTT, RTTP (t). For
example, relative errors for the prediction of rcPT

(t)
are below 50% for more than 80% of the traceroute

measurements, and below 30% for more than 90% of
the measurements when predicting RTTs. To conclude,
we are currently working on an extensive comparison of
our proposal to previous work [4]. We believe that the
input features used by our predictor have better pre-
dicting power than those in [4], due to the inclusion of
significant statistical properties.
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