
WHAT: A Big Data Approach for Accounting of Modern Web Services

Martino Trevisan† Idilio Drago† Marco Mellia† Han Hee Song‡ Mario Baldi†‡

†Politecnico di Torino, Italy ‡Cisco, Inc.

Abstract—HTTP(S) has become the main means to access
the Internet. The web is a tangle, with (i) multiple services
and applications co-located on the same infrastructure and
(ii) several websites, services and applications embedding
objects from CDN, ads and tracking platforms. Traditional
solutions for traffic classification and metering fall short in
providing visibility in users’ activities. Service providers and
corporate network administrators are left with huge amounts
of measurements, which cannot immediately reveal the real
impact of each web service on the network. Such visibility
is key to dimension the network, charge users and policy
traffic. This paper introduces the Web Helper Accounting Tool
(WHAT), a system to uncover the overall traffic produced by
specific web services. WHAT combines big data and machine
learning approaches to process large volumes of network
flow measurements and learn how to group traffic due to
pre-defined services of interest. Our evaluation demonstrates
WHAT effectiveness in enabling accurate accounting of the
traffic associated to each service. WHAT illustrates the power
of machine learning when applied to large datasets of network
measurements, and allows network administrators to regain
the lost visibility on network usage.

I. INTRODUCTION

Monitoring how web services are used and how they con-

sume network resources is key to Internet Service Providers

(ISP) and network administrators when operating and plan-

ning the network. Companies, for instance, need to monitor

their enterprise traffic to limit bandwidth consumption, spot

sudden growth in usage of services, and enforce corporate

polices on accredited services. With more and more enter-

prise traffic directed to web applications offering IT services,

network managers have now an urgent need for tools to

understand and control network usage.

Traffic classification plays a fundamental role in uncover-

ing what applications and services are being accessed, and

a variety of classification methods has been proposed in

the past [1], [2]. A large and growing fraction of transac-

tions happening over the Internet is based on the HTTP(S)

protocol nowadays. Whether users are browsing the web,

accessing business or leisure applications, using mobile

apps, sharing or accessing content, chances are HTTP(S) is

used to support the communication. The clear trend towards

encryption by default [3] leaves in-network monitors with

large collections of raw data, mostly containing layer-3 and

This research has been funded by the Vienna Science and Technology
Fund (WWTF) through project ICT15-129, “BigDAMA”.

Time (7s)

www.nytimes.com — core domain

n
yt
.c
om

krx
d.n

et

ta
gs
rv
cs
.c
om

m
ed
ia
.n
et

ak
am

ai
.n
et

m
oa

ta
ds.

co
m

3
6
0
yi
el
d.
co
m

go
og

le
.c
om

ch
ar
tb
ea
t.
n
et

n
ex
ac
.c
om

do
u
bl
ec
li
ck
.n
et

ad
f
or
m
.n
et

www.washingtonpost.com — core domain

w
ash

in
gton

post.com

en
tru

st.n
et

globalsign
.com

clou
df
ron

t.n
et

in
dex

w
w
.com

m
oatads.com

criteo.com

google.com

m
ath

tag.com

spotx
ch
an
ge.com

krxd.net

f
acebook.com

Figure 1: Flows opened when visiting nytimes.com and

washingtonpost.com – in bold, shared third-party services.

layer-4 flow information, which are insufficient to accurately

reveal how applications consume network resources.

Augmenting flow information with the name of servers,

as obtained via DNS [4], [5] or TLS handshake parsing,

has been proposed as a means to overcome such limita-

tions. By relying on server names indications, in-network

monitors could infer the service or organization behind

each flow. Unfortunately, the widespread use of Content

Delivery Networks (CDNs), as well as ads and tracking

platforms, challenges the methodology – e.g., because (i)

CDNs and cloud platforms co-locate multiple services or (ii)

different websites, services and mobile applications generate

HTTP(S) flows to similar servers to retrieve third-party

content, ads, trackers etc.

The question we want to address is what is the total

cost of visiting a given site, including all traffic the client

downloads due the visit. An example of the difficulties to

address this question is shown in Fig. 1. Assume a user

visits two news websites. Flows observed in the network are

depicted as arrows, which are annotated with the 2nd-level

domain name of servers. Most names are not informative,

and both sites contact common servers (in bold) to render

pages. We are interested in accounting all flows as triggered

by the original sites (i.e., the red arrow). We call these

sites the core domains the user intentionally visit. A naive

methodology taking into account only the flows to core

domains would identify less than 20% (4%) of the actual

bytes (flows) caused by the visits, whereas numbers would

be increased to 70% (30%) if domain ownership – e.g.,

nyt.com belongs to nytimes.com – is considered.

We apply machine learning to address the challenges of

precisely accounting web traffic. We present the Web Helper

Accounting Tool (WHAT), a system to automatically learn

which flows are triggered by visits to a website. WHAT is

completely unsupervised. It learns dependencies from flow-

level traces annotated with the domain names. Given a list

of core domains of interest, WHAT automatically identifies

the support domains that are opened for downloading pic-

tures, plugins, etc. Since support domains may serve many

websites, WHAT includes mechanisms to identify the most

likely core domain triggering each observed flow.

WHAT identifies subordinate flows by creating Bag of Do-

mains (BoDs): a model of the traffic generated by accessing

a site, based on the unordered set of all support domains

that may be triggered by the core domain visit. Ingenuity is

required to weight support domains and avoid background

traffic to pollute BoDs. WHAT successfully adopts text

processing approaches to obtain representative BoDs.

Our contribution is a fully working system capable of

applying the technique on flow-level traces. Given the typical

large volumes of such traces, WHAT must rely on state-of-

the-art “big data” platforms and is implemented using the

Apache Spark framework. WHAT is validated using actual

browsing histories of 30 volunteers and then applied to a

2 month long dataset collected from a live ISP network to

provide an indication of the system performance.

II. THE WHAT SYSTEM

A. Architecture Overview

We assume a passive network monitoring infrastructure

is in place and exposes per-flow records to be classified

by WHAT (e.g., NetFlow, or logs collected by proxies)

according to the website that triggers them (see Fig. 1).

Beside traditional information such as flow identifiers, client

identifiers, traffic volume and timestamps, we assume each

flow is already annotated with the Fully Qualified Domain

Name (FQDN) of the server being contacted, hereafter

informally called domain name [4], [5].

WHAT is a completely unsupervised system. It builds a

model based on flow traces and then uses it to classify traffic.

WHAT defines the model in a completely automatic way,

minimizing user intervention and adapting to usage scenario.

Fig. 2 summarizes the WHAT architecture. It is composed

of two modules: The Training Module and the Classifier. A

list of user-provided core domains are provided as input.

WHAT learns the BoD for each core domain from traffic

traces. BoDs are then employed to classify new flows from

live traffic. We next describe the expected input data format,

followed by the working internals of WHAT modules.

B. Input Data

WHAT expects two input files. First, the user must provide

a list of targeted websites – i.e., a list of core domains. Such

list is a set of domain names that can be retrieved from

Training Module

Traces

List of core domains

abc.de.com

fgh.ij.com

lmn.op.com

...

Classifier

New Traffic

core: fgh.ij.com

opq.rs.com 1.24 0.89

tuv.xz.com 0.57 0.75

abc.de.com 0.34 0.42

...

core: fgh.ij.com

opq.rs.com 1.24 0.89

tuv.xz.com 0.57 0.75

abc.de.com 0.34 0.42

...

Bags of Domains (BoDs)

core: fgh.ij.com

opq.rs.com 1.24 0.89

tuv.xz.com 0.57 0.75

abc.de.com 0.34 0.42

...

Figure 2: WHAT architecture.

public repositories (e.g., open crawling efforts [6]), or can

be manually crafted to include only services of interest.

Secondly, WHAT must receive flow records, such as, for

example, those exported by NetFlow. Given a flow f – i.e.,

an entry composed of client and server IP addresses, port

numbers and transport protocol – let tsf , tef be the time

of the first and last packet in the flow. We assume that the

flow record is enriched with information about the server

domain name df used by clients when obtaining the server

IP address. Flow meters typically export information from

the network and transport layers, missing the association

between IP addresses and domains. Different methods can

be used to annotate flow records with domains. DNS logs

can be employed to extract queries/responses and annotate

records either online [4], [5] or in a post-processing phase.

Equally, some flow meters export domain names on-the-fly –

e.g., extracting Server Name Identification (SNI) from TLS

flows, or the Host: field from plain HTTP headers.

We rely on Tstat [7] to collect data summarizing flows.

Tstat exposes more than 100 metrics, including the typical

ones exported by popular flow meters – i.e., server IP

addresses contacted by clients, flow timestamps and bytes

counters. Also, Tstat implements all the above mechanisms

to extract server domain names and label traffic flows.

C. Training Module

WHAT training consists of building a BoD Bc for each

core domain c. This step is challenging because domain

names observed in the network may fall into many cate-

gories, such as: (i) core domains passed as input; (ii) support

domains that are triggered by multiple core domains; (iii)

unknown domains – e.g., domains contacted by background

services; (iv) false core domains – e.g., domains that are

both core and support domains, depending on the website

being visited. For instance, we can see in Fig. 1 that flows

to google.com are opened by both news websites. In this

example, google.com is a support domain for nytimes.com

and washingtonpost.com. The same domain name is however

a core domain used to host Google services.

WHAT relies on two ideas to build BoDs from traces.

First, it learns BoDs by observing flows that start near in

time to core domain flows. The intuition is that support flows

are opened immediately after a visit to websites. We call the

time interval in which flows are considered the observation

window OW . Second, WHAT filters out unrelated domains

by calculating a domain score, represented by frequency that

support flows are seen in observation windows.

1) Observation Window and BoDs: Given the set of

core domains C, WHAT learns the BoD Bc for each c ∈ C

WHAT considers the flow traces generated by each client,

e.g., all flows generated by the same client IP address.

WHAT extracts the BoDs from passive traces directly at

the vantage point, i.e., learning (and updating) the BoDs

from the data the system is exposed to. While learning

BoDs, WHAT minimizes the impact of false core domains

by considering valid triggers those flows directed to a core

domain c that appears after a idle period ∆Tidle, i.e., likely

due to a new user visit.

When a trigger is observed, WHAT extracts all domains

found in the observation window OW following it. The

duration of the observation window, ∆TOW , is a parameters

of the system, discussed in Sec. IV. A domain d appearing in

the OW becomes part of the BoD Bc as a support domain.

Traces from all clients contribute to learn Bc.

Notice that not all support domains appear after every

visit to a website. More dangerous, background traffic and

support domains triggered by other core domains may ap-

pear in OWc by chance, poisoning Bc with false support

domains. WHAT needs then to observe a large number

of OW s to accumulate support domains, and select those

that are actual support domains. The assumption is that

support domains emerge, whereas the irrelevant ones (e.g.,

background domains and false support domains) can be

filtered out by means of thresholds and domains scores.

2) Domains Score: The key idea is that domains that are

triggered by a core domain should appear more frequently

over multiple OW s than other domains. We leverage text

processing methodologies to implement a filtering process

based on this idea. We rely on the tf − idf (term frequency

– inverse document frequency [8]) of domains in bags to

represent the scores. The tf − idf is used in information

retrieval to evaluate the importance of a word to a document

in a collection. A word is more important when it appears

often in a document (the tf), but its importance is reduced

by a factor representing how frequent the word appears in

other documents in the collection (the idf).

In our problem, a document is a BoD Bc for the core

domain c, a word is a domain name d ∈ D and the collection

of documents is the set of all bag of domains BoDs.

The training phase results in a BoD for each core domain

c ∈ C. Each domain d ∈ Bc is associated two scores:

Bc = {(tf(d,Bc), tf idf(d,Bc))|d ∈ D}. (1)

Algorithm 1 classify(C,BoDs, F)

Input:
C = {c1, ..., ck} ⊲ core domains

BoDs = {Bc1 , ..., Bck} ⊲ BoDs of core domains in C
F = {f1, ..., fn} ⊲ list of flows of a client to be classified

Output:
O = {(f1, l1), ..., (fn, ln)} ⊲ labeled flows

1: W ← ∅ ⊲ set of currently active EVs

2: O ← ∅
3: for f ∈ F do

4: // retrieve start/end times and domain name of f
5: tsf , tef , df ← parse(f) ⊲ tsf is also current time

6: // remove expired EVs

7: W ← {(ts, te, ci, Bci) ∈W |tsf − te ≤ ∆TEV }
8: // obtain the best neighbor BoD among the active ones

9: wbest ← {(ts, te, d, B)} ← BestBoD(tsf , df ,W)
10: if df ∈ C ∧ valid core(df , tsf , wbest, F) then
11: // start an evaluation window for core domain df
12: W ←W + {(tsf , tef , df , Bc)}
13: O ← O + {(f, df)}
14: else
15: if wbest 6= ∅ then

16: O ← O + {(f, d)}
17: tewbest

← max(tef , tewbest
) ⊲ fix boundaries

18: else
19: O ← O + {(f, “unknown′′)}

If d appears in all BoDs, then idf(d,BoDs) = 0 and

tf idf(d,Bc) = 0, suggesting its presence is insignificant to

characterize the document. Similarly, if d does not appear

in any observation window in OWc, tf(d,Bc) = 0 and

tf idf(d,Bc) = 0. WHAT uses the tf(d,Bc) score to

remove from Bc core domains that appear too infrequently,

i.e., tf(d,Bc) < MinFreq, since those are likely to be

background or false support domains. Trade-offs are ex-

plored in Sec. IV. The score tf idfd,Bc
allows WHAT to

assign ambiguous domains that appear into several BoDs

during classification. In the following section we give details.

D. Traffic Classifier

Armed with core domains and their respective BoDs,

WHAT processes traffic to classify flows. WHAT uses Algo-

rithm 1 to classify each flow f . It receives the set of core

domains C, the BoDs and the set of flows F generated by

a client. It outputs flows annotated with core domains, or

unknown in case no association is found.

The algorithm is based on the concept of Evaluation

Window (EV), i.e., the time during which a support flow can

appear after the observation of a core domain. The algorithm

maintains a list of active EVs, W . The list grows as new core

domains are observed (lines 10–13), and entries are aged

out based on a timeout ∆TEV , i.e., window ending time

te = maxf∈W tef is elapsed by at least ∆TEV (line 7).

Differently from the training phase, the evaluation window

duration is extended during classification. This happens

when new support domains are found (line 17). The rationale

is that flows to support domains may be observed long time

after the core domain, since the terminal keeps downloading

objects due to a user action, e.g., scrolling a web page that

triggers the download of new elements.

In case multiple active windows are alive, WHAT

checks which is the most suitable one using the function

BestBoD() (returning wbest – line 9). Details are omitted

for the sake of brevity. We checked different options, and

opted for a “closest in time” criteria: WHAT looks for the

closest active window among W , for which the domain df
of f has a frequency above a MinFreq threshold.

At last, WHAT has to resolve the ambiguity for names that

are both support and core domains. When the domain df of

the flow f is a core domain, and at the same time it belongs

to at least one active BoD in W , WHAT disambiguates the

situation relying on the function vaild core() (line 10). In

sum, WHAT creates an evaluation window EV starting from

the given ambiguous flow, and looking forward for flows

in the EV after the current flow time tsf . Then, WHAT

calculates the sum of tf idf scores for domains in both

(i) this future evaluation window (i.e., considering df a core

domain) and (ii) the best BoD in active evaluation windows

(i.e., wbest, considering df a support domain). WHAT selects

the situation producing the highest sum of tf idf scores.

Being designed primarily for accounting, WHAT can

tolerate small delays. WHAT processes groups of flows,

which are ingested into the system in batches. It is however

important to notice that the traffic classifier module operates

on a per-flow and per-client basis and, thus, its algorithms

can easily scale to large data streams.

III. DATASETS

For training and testing we build upon two datasets. We

learn BoDs using a passive trace collected from a large ISP

network. Then, we assess WHAT classification performance

using a dataset made by revisiting pages found on browsing

histories of users, which list actually visited core domains.

Thus, where we have the full ground truth knowledge.

A. ISP Trace

Our first dataset includes flow summaries exported by

Tstat in a real deployment. We have instrumented a Point of

Presence (PoP) of a European ISP, where ≈10,000 ADSL

customers are aggregated. No ground truth is available in

this trace. The ISP provides each ADSL customer (i.e.,

installation) a fixed IP address. Thus, by inspecting the

(anonymized) client IP addresses in our dataset, WHAT

isolates flows per ADSL installation, and use them as the

per-client trace F . The trace includes information about

traffic of all users’ devices connected at home. We consider

data of the entire months of March and April 2016, obtaining

2.2 billion flows related to around 5 million domains. Data

is stored in a Hadoop cluster for scalable processing.

B. Validation Traces

To assess WHAT performance, we create a labeled dataset

using data from volunteers. We collect browsing histories of

30 users, extracting all visited URLs directly from SQLite

databases used by Safari, Chrome and Firefox. These are

core domains, since users explicitly visited these URLs.

To obtain a set of support domains, we revisit each URL

by instrumenting a Firefox browser with Selenium [9]. We

let Selenium visit each URL and wait until the page is fully

loaded (i.e., the On Load event is fired). The next URL

in the list is then loaded after the browser is inactive for 1

second. Note that this could create artifacts, e.g., eventual

video playback is stopped after 1 s from the experiment start.

In parallel, Tstat records flows seen in the network, saving

the same information that would be available in real WHAT

deployments. We post-process the trace to label each flow

with the core domain that triggered it; To do this, we take

into account the time when the browser requested a new

page, and label the consecutive flows as triggered by the

original visit. In total, 100,000 URLs are visited, referring to

3,759 core domains, and 9,764 support (possibly ambiguous)

domains. Crawling was done in April 2016 and lasted 5 days.

From these raw traces, we build two benchmarks:

1) Web Browsing Benchmark: It represents users con-

tinuously browsing the web. Visits are sequentially organized

and assigned to the same client IP address. The original

sequence in which pages are requested by each volunteer is

maintained, thus mimicking users’ behaviors. We produce

the benchmark by post-processing traces to replace the

timestamps recorded by Tstat while revisiting URLs using

Selenium. Inter-visit times follow the distribution observed

in browsing histories. After the time of core URL visits are

determined, we populate the benchmark with support flows,

respecting their inter-arrival time seen by Tstat.

2) Concurrent Navigation Benchmark: This bench-

mark simulates several browsing threads in parallel. Core

and support domains of many visits appear simultaneously

in the traces. This benchmark is created by repeating the

previous steps, so that each thread simulates an independent

(active) user. To avoid any kind of synchronization among

threads, each navigation starts following the concatenated

browsing histories of volunteers at a random position. This

scenario can be seen as an extreme case of NAT, where n

user are concurrently and continuously browsing the web.

IV. WHAT VALIDATION

A. Classification Performance

We evaluate WHAT performance when classifying new

flows. WHAT learns BoDs from ISP traces, and its perfor-

mance is assessed on the benchmark traces. We consider the

500 most popular core domains seen in volunteers’ browsing

histories and let WHAT learn the BoDs using the ISP trace.

Fig. 3a shows results for the Web Browsing benchmark.

The figure depicts the accuracy of WHAT when learning

BoDs using an increasing number of flows. Training is

performed using the initial part of the ISP traces – each

experiment takes an increasing period of the trace for

 75

 80

 85

 90

 95

 100

1h 4h 1d 4d 15d

2m

A
cc

u
ra

cy
 [

%
]

BoDs Learning Period

a)

Optimal Learning

 50

 60

 70

 80

 90

 100

1 3 5 8 12 16 20

Concurrent navigations

b)

 50

 60

 70

 80

 90

 100

0.1

0.6

2 6 15 50

A
cc

u
ra

cy
 [

%
]

∆T
EV

 [sec]

c)

 50

 60

 70

 80

 90

 100

20 5 1 0.2

0.05

0.01

MinFreq [%]

d)

Web Trace 5 Concurrent Navigations

Figure 3: Accuracy vs. input data and parameters values.

learning. Accuracy in these experiments is computed as the

percentage of volume in bytes correctly labeled on the trace.

All flows triggered by core domains not among the 500

domains considered in the training set must be labeled

as “unknown” to be rightly classified. Therefore, errors

occur because flows have been (i) labeled with wrong core

domains; (ii) mislabeled as “unknown”; or (iii) labeled

with core domains, while should be “unknown”. Flow-wise

statistics lead to similar results and are not reported.

Focusing on the left-most point in Fig. 3a, note that

WHAT correctly classifies 90% of the traffic volume with

a learning set of 1 day only. That is, most of the popular

BoDs are learned by observing a single day of traffic in

such medium-sized PoP/ISP. Increasing the learning set

marginally improves results, with the best accuracy at around

93% with a 1-month long learning set.

The figure also reports an “optimal learning” line, which

marks the accuracy when WHAT learns BoDs from the same

validation trace used for testing – i.e., a biased result that

gives hints on the best possible performance of the algorithm

in this benchmark. By contrasting lines in the figure, we can

conclude that WHAT , when trained with ISP traces, achieves

results that are very close to the optimum one.

Fig. 3b presents the accuracy in the concurrent navigation

benchmark. Results are obtained by increasing the number of

concurrent users. User aggregation reduces the performance

of WHAT . This is not a surprise, since users navigating

in parallel increase the probability of ambiguous support

domains appear on the trace. Overall, WHAT performs very

close to its best accuracy when up to five users are actively

browsing the web behind a single IP address. The accuracy

drops to ≈ 80% when more than 20 users are active. Note

that the benchmark simulates users that are all active at the

Parameter Best Value

Training set size 1 Month

∆TOW 10 Seconds

∆Tidle 5 Seconds

∆TEV [1–4] Seconds

MinFreq [1–5] %

Table I: Best choices of parameters.

same time. This means that WHAT can satisfactorily operate

with typical ISP traffic, where only few users are aggregated

behind a home-gateway acting as a NAT.

B. Sensitivity of Parameters

WHAT relies on a number of parameters, which affects its

accuracy. We discuss Evaluation Window (∆TEV) and the

minimum tf score to include domains in BoDs (MinFreq),

since they have the highest impact on the system; for the

others, the same procedure has been followed. Best choices

for all parameters, including those omitted for brevity, are

listed in Tab. I. For experiments in this section, WHAT is

trained with one month of traffic from the ISP traces, and

tested with the two benchmarks. In the case of concurrent

navigation, we use 5 simultaneous threads.

1) Evaluation Window (∆TEV): Fig. 3c depicts how

accuracy varies according to ∆TEV . Lines represent results

for the two benchmarks.

Focusing on the web browsing benchmark (red line), no-

tice how the accuracy starts at ≈ 80% when ∆TEV = 0.1 s,

grows at the best figures (e.g., ≈ 90%) when ∆TEV = 5 s,

and consistently decreases for larger values. Very small

values of ∆TEV cause WHAT to miss support domains,

whereas large ∆TEV values increase the chance to account

for background or unrelated flows.

∆TEV becomes more important in scenarios where there

are multiple navigation threads (green line). Accuracy de-

creases faster for large number of simultaneous navigation

threads. This happens because support domains appearing

in multiple bags can be misclassified when more than one

core domain appears close in time.

Overall, ∆TEV ∈ [1, 4] s provides the best trade-off.

2) MinFreq Threshold: The impact of MinFreq is

illustrated in Fig. 3d. Curves for the two benchmarks are

depicted. The x-axis marks the value of the threshold – e.g.,

x = 2% depicts results for which any domain with tf lower

than 2% in a BoD is not considered.

The importance of the MinFreq to filter out noise from

BoDs becomes clear. As an example, when MinFreq is too

large (e.g., 20%), domains that are popular in BoDs may be

ignored, resulting in a sharp decrease on accuracy.

On the other extreme, when MinFreq is low, unrelated

support domains pollute BoDs. Focusing on results for

MinFreq = 0.05%, notice how accuracy is around 90%

in the web browsing benchmark, but it is reduced to around

83% for concurrent navigation. This happens because unre-

lated domains in BoDs decreases classification performance.

Overall, MinFreq ∈ [1, 5]% provides best trade-off.

V. EARLY DEPLOYMENT EXPERIENCE

WHAT aims at accounting network usage. Monitoring

only at flow level, such as with NetFlow or Tstat, guarantees

a significant reduction on the volume of data exported from

network monitoring equipment. However, our experience is

that even flow measurements fast mount to large volumes

in high-speed networks. Thus, we have implemented WHAT

based on Apache Spark, given its easy parallel framework

and built-in support for streaming processing.

To give an impression on WHAT performance, we bench-

mark WHAT using the ISP trace presented in Sec. III-A.

Recall that the ISP trace contains more than 2.2 billion flow

records. We use the full trace both for training and testing

the system in a middle-sized Hadoop cluster (30 working

nodes), and measure the run-time of the training and test

algorithms. We find that the processing takes about 1 hour

for training and 30 minutes for classification – i.e., WHAT

can classify dozens of thousands flow records per second

on each working node of the cluster. Since the problem

is trivially parallelizable, we expect WHAT to scale well

according to the cluster capacity.

VI. RELATED WORK

A large number of classification methods are based on

the inspection of packet content [1], [10], [11]. Content-

based methods are however getting outdated, since encryp-

tion prevents the extraction of protocol information from

network traffic. WHAT requires only flow-level information

augmented with hostnames, which can be obtained even for

encrypted protocols (e.g., using the DNS).

Behavioral techniques are also popular for traffic classifi-

cation [2], [12]: The host behavior and machine-learning are

used to infer protocols and applications generating traffic.

WHAT is a behavioral classifier. Differently from previous

proposals, which build models based on host addresses and

port numbers, WHAT learns a model based on hostnames

that identify flows. Thus, WHAT can differentiate web ser-

vices even if they use the same protocol (e.g., HTTPS) and

are hosted in the same infra-structure (e.g., CDNs).

The proposal in [13] is the closest to ours. It introduces

a tool to identify association between flows, based on the

frequency in which pairs of flows are concurrently active.

WHAT relies on similar ideas from information retrieval to

cluster flows, but it targets the classification of web traffic

and operates with only flow records labeled with hostnames.

Agar et al. [14] propose to use the DNS for classification.

They build a map of the whole web using DNS information.

Plonka et al. [5] use DNS traffic to label flows while

capturing traffic. This is used to build a classifier that

separates traffic into categories. Other works (e.g., [4], [15])

share similar goals, using either DNS or SNIs found in TLS

handshakes. In contrast, we address typical web services

that make the majority of the traffic nowadays, ignoring

well-known protocols (e.g., FTP or P2P). Moreover, WHAT

extends such works, since it not only labels flows with

hostnames, but also groups flows triggered by a single site

visit. Thus, WHAT is able to operate even when hostnames

are not informative about the initial visited website.

VII. CONCLUSIONS

This paper presented WHAT , describing how it mines

information from flow records enriched with hostnames.

Given a list of core domains representing the services to

monitor, it learns the set of associated support domains

contacted as a consequence. WHAT uses this model to

categorize flows according to websites triggering the traffic.

The big data approach followed by WHAT offers network

administrators accurate per-service metering, while allowing

scalability for processing large data streams.

REFERENCES

[1] A. Callado et al., “A Survey on Internet Traffic Identification,”
Commun. Surveys Tuts., vol. 11, no. 3, pp. 37–52, 2009.

[2] H. Kim et al., “Internet Traffic Classification Demystified:
Myths, Caveats, and the Best Practices,” in Proc. of the
CoNEXT, 2008, pp. 1–12.

[3] D. Naylor et al., “The Cost of the ”S” in HTTPS,” in Proc.
of the CoNEXT, 2014, pp. 133–140.

[4] I. Bermudez et al., “DNS to the Rescue: Discerning Content
and Services in a Tangled Web,” in Proc. of the IMC, 2012,
pp. 413–426.

[5] D. Plonka and P. Barford, “Flexible Traffic and Host Profiling
via DNS Rendezvous,” in Proc. of the SATIN, 2011, pp. 1–8.

[6] “Common Crawl,” http://commoncrawl.org/.

[7] A. Finamore et al., “Experiences of Internet Traffic Monitor-
ing with Tstat,” IEEE Netw., vol. 25, no. 3, pp. 8–14, 2011.

[8] K. S. Jones, “A Statistical Interpretation of Term Specificity
and Its Application in Retrieval,” Journal of Documentation,
vol. 28, no. 1, pp. 11–21, 1972.

[9] “Selenium,” http://www.seleniumhq.org/.

[10] T. T. Nguyen and G. Armitage, “A Survey of Techniques
for Internet Traffic Classification Using Machine Learning,”
Commun. Surveys Tuts., vol. 10, no. 4, pp. 56–76, 2008.

[11] H. Yao et al., “SAMPLES: Self Adaptive Mining of Persistent
LExical Snippets for Classifying Mobile Application Traffic,”
in Proc. of the MobiCom, 2015, pp. 439–451.

[12] T. Karagiannis et al., “BLINC: Multilevel Traffic Classifica-
tion in the Dark,” in Proc. of the SIGCOMM, 2005, pp. 229–
240.

[13] S. Kandula et al., “What’s Going on?: Learning Communi-
cation Rules in Edge Networks,” in Proc. of the SIGCOMM,
2008, pp. 87–98.

[14] B. Ager et al., “Web Content Cartography,” in Proc. of the
IMC, 2011, pp. 585–600.

[15] P. Foremski et al., “DNS-Class: Immediate Classification of
IP Flows using DNS,” Int. J. Netw. Manag., vol. 24, no. 4,
pp. 272–288, 2014.

http://commoncrawl.org/
http://www.seleniumhq.org/

	Introduction
	The WHAT System
	Architecture Overview
	Input Data
	Training Module
	Observation Window and BoDs
	Domains Score

	Traffic Classifier

	Datasets
	ISP Trace
	Validation Traces
	Web Browsing Benchmark
	Concurrent Navigation Benchmark

	WHAT Validation
	Classification Performance
	Sensitivity of Parameters
	Evaluation Window (TEV)
	MinFreq Threshold

	Early Deployment Experience
	Related Work
	Conclusions
	References

