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Abstract—In this paper, we study the problem of predicting The most common approach to analyze Internet paths in
Internet path changes and path performance usind raceroute  the large-scale is by relying on active measurements. Siste
measurements and machine learning models. Path changes are sych as DisSNETPerf [6], iPlane [7], Revettseacer out e [8]
frequently linked to path inflation and performance degrada  and Sibyl [9] are all distributed measurement systems which
tion; therefore, predicting their occurrence is highly relevant o1y ont'r acer out e measurements to monitor Internet paths
for performance monitoring and dynamic traffic engineering. performance. Analyzing the performance of a certain path

We introduce NETPerfTrace, an Internet Path Tracking system th h acti t . t larl
capable of forecasting path changes and path latency variains. rough aclive measurements requires 1o regularly measure

By relying on decision trees and using empirical distributon ~ OF sample the path, by periodically launching traceroutes to
based input features, we show that NETPerfTrace can predict [€trieve relevant metrics. However, there is a constraint i

(i) the remaining life time of a path before it actually changes ~ how often measurements are performed, trading the accuracy
and (i) the number of path changes in a certain time-slot wih of the analysis with the probing resource budget. As such,
high accuracy. Through extensive evaluation, we demonstte that monitoring a large number of Internet paths through active
NETPerfTrace highly outperforms DTRACK, a previous system  measurements requires some smart ways to allocate a pre-
performance forecgsting capgbilities. In particglar, it can predict an efficient path-sampling scheduling approach is to aléoca
path latency metrics, providing a system which could not onf 0 5 rements with finer granularity for more dynamic paths,

predict path changes but also forecast their impact in termsof d d th ific ti h | t path ch
performance variations. As an additional contribution, werelease ana aroun 0Se specific imes when relevant path changes

NETPerfTrace as open software to the networking community. (-8, causing performance degradation) are close to lappe

Keywords—Traceroute; Machine Learning; Prediction; Bench- Tq this end, and similar to [10], [11], we propose to predict
marking; M-Lab; DTRACK. the time when a path change would occur by relying on

t racer out e measurements and supervised machine learning
prediction models. We introduce NETPerfTrace, an Internet
. INTRODUCTION Path Tracking system capable of predicting paths with highe
chances of change, forecasting the most likely time when
Internet paths change frequently due to inter/intra-domaithese paths would actually change, as well as predicting
routing changes, load balancing and even misconfigurationgeir future path latency. Extensive evaluations usinghlyig
and failures [1]. Some of these changes can seriously disrugistributedt r acer out € measurements from M-Lab show
performance, causing longer round-trip times, congestion that NETPerfTrace perfectly predicts (i) the remaininge lif
even loss of connectivity [2]. For example, in [3], Google time of a path (i.e., the time before a path change) in about
reports that inter-domain routing changes caused more thag0% of the cases, (ii) the exact number of daily path changes
40% of the cases in which clients experienced a latencyh about 70% to 80% of the cases, and (iii) the average
increase of at least 100 ms. These changes could not onTT of a path in about 50% of the cases. In addition, we
impact the QoE of the end users, but also might turn to b&how that NETPerfTrace highly outperforms DTRACK [10],
quite costly: Amazon claims that every additional 100 ms off11], a previous system conceived to predict Internet path
page load time could cost them 1% of their sales [4], ancthanges. In particular, NETPerfTrace outperforms DTRACK
that a page load slowdown of just one second could turn int¢yy a factor of 5 in forecasting the residual lifetime of a path
a $1.6 billion loss in sales each year [5]. Google has alsquith relative prediction errors below 10%, and by a factoi of
calculated that, by slowing their search results down by 40Gnh correctly predicting daily path changes. A closer lootoin
ms, they could lose 8 million searches per day, meaning thepesults reveals that the input features used by NETPeréTrac
would serve up many millions fewer advertisements [5]. Ashave better forecasting power than those used by DTRACK,
such, predicting the time when a path is likely to change, aand that the selected prediction model is by far much better
well as how such a change would impact end-to-end latencyor the prediction task.

becomes a highly relevant problem in practice. NETPerfTrace relies on a standard random forest model for

The research leading to these results has been partialigefuy the pred|ct|on, WhICh prowdes hlghly accurate results Wlthwe
Vienna Science and Technology Fund (WWTF) through proje15-129,  lOW CompUta“O'_"al overhead as compa_red_to other evaluated
“BigDAMA’". models. In particular, we benchmark six different regr@ssi




models - including random forests, neural networks, SVRH li [10], [11], which is the target of this paper. Papers such as
ear regression, decision trees and bayesian regressibisean [2], [3] study the potential causes leading to Internet path
lect the best one for NETPerfTrace. We also perform extensivchanges, particularly those causing highly increasingniay
evaluation on the impact of different input features, stady [3]. Close to our work, authors in [10], [11] study the pratle

the correlations between inputs and prediction targetsyedls  of predicting path changes using bathacer out e measure-

as by using wrapper and filter feature selection techniques. ments and machine-learning based predictors. In particula
they develop a model based on K nearest-neighbors to predict
hoth the remaining time of a established path before a change
and the number of changes experienced by a path on a certain
time period. Our work builds on these papers, using differen
modeling techniques and different input features for prtatn.

NETPerfTrace is open-source and freely available o
GitHub at https://github.com/SAWassermann/NETPerférac
The datasets used in this paper are also available at theiitH
repository, making all the results fully reproducible. We a
currently extending our tool DisNETPerf [6] by adding an
automatic approach tdynamically adapt the sampling rate of Finally, in terms of predicting end-to-end path performanc
a path based on the remaining time until a next path changeising machine learning models, papers such as [13], [14d bui
similar to [10]. models to predict the RTT of a TCP connection at a small
time scale, to better optimize the TCP protocol. Our path
‘latency prediction problem is similar, but our target is atip
performance and not on TCP optimization. In addition, we
operate at the time granularity provided by theacer out e
-based sampling of a path, and not at a per RTT granularity
provided by a TCP connection.

The remainder of this paper is organized as follows
Sec. Il briefly reviews the related work. Sec. Il describies t
basic concepts behind NETPerfTrace, including the priegtict
targets and the corresponding input features. Sec. IV ptese
the benchmarking results related to the evaluation of pielti
machine learning models, and reports initial results fofTNE
PerfTrace using the most accurate model. Sec. V evaluates This paper is an extension of our early work on path dy-
the impact of different input features, using multiple teat  namics and performance prediction [15], where we presented
selection techniques. Sec. VI reports the results obtained some first results of the techniques described next.
the comparative evaluation of NETPerfTrace and DTRACK.

Finally, Sec. VII concludes this work.
y Ill. PREDICTING PATH CHANGES & PERFORMANCE

II. RELATED WORK In this section, we introduce some basic definitions to

. . . . . formulate the corresponding learning and prediction pobl
There is a very rich literature in the problem of USING hehind NETPerfTrace. We define a pathas a sequence of

tracerout e measurements to track Interet path dynamicinks connecting a certain fixed sourseo a fixed destination

andl p_erfo;magce. Sigce the early wok;k hOf Paxson on they At any timet, pathP(t) is realized by a specific route this
analysis of end-to-end Internet routing behavior [1], ml#t 1o te consists of a specific sequence of links connestiogi,
research efforts have targeted the study of Internet pathg,q pas an associated initial timewhen the route becomes
at the large scale. Paxon's study was one of the first Ussqijve or in-place, and a final time which corresponds to the

ing a reasonably large number of d|str|butedacer oute  yime whenr changes to another route realization, i.e., when the
measurements to analyze relevant Internet routing and palya| route changes. From now on, we therefore refer terout

properties such as stability, symmetry, and patholog@sit®y  anges instead of path changes. As such, a Béthcan be

Fonsidered as a statistical time process, composed of a set

figurations and failures. He concluded that while Internet ¢ i i i i i
pgths are heavily dominated by single long-lasting routes, t(; tlme_-C?ntlgfogs r(?]utesi(kto, tff)' eagh one with duraglon
time periods over which routes persist show wide variation, (r:) = t} — & For the sake of notation, we say thats P.
ranging from seconds up to days. Closer in time, authors in  We additionally define the duration of a rout@s D(r) =
[12] reappraised Paxson’s results using larger datasets, at, — ¢, its current life time oroute age at timet as L,.(t) =
concluded that Paxson's observations on path stability sti¢—¢,, and its remaining life (i.e., time before a route change)
hold. at timet as R, (t) = t; — t. Finally, we definercp(t) as the

Systems such as DisNETPerf [6], iPlane [7], Reversémal number of route changes observed so far at tinfier
tracerout e [8] and Sibyl [9] are all distributed measure- path P aanCPT (t) as the.number of route changes observed
ment systems which rely onr acer out e measurements to SO far at timet for path P in the current time-slof.
track and predict Internet paths performance. DisNETPRadf a Given a newt r acer out e measurement at time the
Reversd r acer out e particularly target the problem of mea- prediction problem solved by NETPerfTrace includes three
suring paths from arbitrary selected sources. iPlane abyl Si prediction targets: (i) the remaining life timg,.(t) of route
both offer a service for predicting the performance of Inégr r namely}A%T(t), (i) the number of route changes a path
paths, by building a structural model of the Internet Usmgexperiences over a specific future time-window of len@th
t racer out e and opportunistic measurements. In a nutshellgefined asep,, and (iii) the average RTT that path will
these system_shcomt()ji_ne_ muItiptI1e historitalacer out @ mea-  gyperience in' the nextr acer out € measurement, defined
f#éﬁgeonrfss\g;mggtes 'rfé'togetggsggﬂi?yersnfaoa;ifggsgg;gtremeasu as avgRTTp(t + €), wheree represents the duration until

' the next measurement. The first two targets correspond to
While the problem of analyzing path changes at the Interneppath dynamics prediction, whereas the third target cansist

scale has attracted important attention in the past, oMy fe path performance forecasting. In practice, wir(t) comes
papers have focused on predicting such path changes [2], [3loser to zero, we would increase the sampling rate to better



monitor the path performance in the event of a route change.| ResiaualEeAmER e atirelSeHEAY [ 11]

Predictingrcp, allows to dynamically identify which paths average ofD(r;), Vri € P 1
are more prone to frequent changes, and thus better allocate minimum of D(r;), Vr; € P 1
newt racer out e measurements. Based on previous results maximum of D(r;), Vr; € P 1
on route stability [1], [12] and similar to [10], we focus on 5-, 10-, 25-, 50-, 75-, 90-, 95-percentiles BX(r;), Vr; € P 7
predicting the number of daily route changes for the next L (t): route age of route- at timert for P 1
day, i.e.,,7 = 24 hours from now on. At last, predicting | # Route Changesrcp,. feature set (i) | 14 |
the average RTT that a certain path would experience average ofrcp,, in P 1
next becomes highly relevant for dynamic traffic enginegrin minimum of rcp,. in P 1
purposes, and when combined with the prediction of route maximum ofrcp,. in P 1
changes, it can provide a very powerful approach to forecast 5-, 10-, 25-, 50-, 75-, 90-, 95-percentilesof . in P 7
those performance-harmful route changes. We do not explore total number of route changes M 1
this combined analysis approach in this paper and leave it fo total number of route changes R in T 1
future work. rcpy (t): number of route changes iR at timet in T 1
To predict these three targets we use a rich set of input binary indication of a route change i !
features describing the statistical properties of routeadyics | RathiCatencyladgiisRreatiielSeHEG) [ 4]
and path latency. Tab. | describe these features, separated average ofRTT stats inP: mean (avg./maz/min/dev RTT) | 4
into three different groups. Note that we compute all these | minimum of RTT stats inP: min (avg./maz/min/dev RTT) | 4
features from the rawr acer out e measurements performed maximum of RT'T stats inP: max (avg./maz/min/dev RTT) | 4
in an observation learning perio@..,, of the monitored 5-, 10-, 25-, 50-, 75-, 90-, 95-percentiles 28
paths, during which we extract the following statistics for of RTT stats gvg./max/min/dev RTT) in P
learning purposes. The first group of features, referredsto a current RT'T' stats gvg./maz/min/dev RTT) at timet 4
F4, includes 11 features relevant to the prediction/Hf(t). Table I. FEATURE SET USED BYNE TPERFTRACE. THE FULL SET

These features describe the statistical properties ofdhler ~ INCLUDES69 FEATURES FEATURE SETSF4, Fip AND F( INCLUDE 11,
duration D(r) observed for each patR. More precisely, we L4 AND 44 DISIOINT FEATURES RESPECTIVELY

compute the average duration of the corresponding rodtes, t assess the prediction power of NETPerfTrace by comparing
shortest and longest observext, and different percentiles for he real and predicted values for the three targets.

this metric. F4 also includes information about the currently

active router at time¢, namely its route agé.,.(t). A. M-Lab Data Description

The second group of features, referred toFas includes
14 features relevant to the prediction ofp,.. Fp features
take into account the statistical propertiesrop,., including
the average, minimum, maximum, and different percentéss,
well as the total number of route changes observedip, .,
the total number of route changes in current time glptaind
the number of route changes observed at tinagthin current
time slot7T. A binary feature indicating the occurrence of a
route change in current time sl@t is also included inF'z.

For the purpose of this study, we analyze a full week
of Parist r acer out e measurements performed through the
M-Lab! open Internet measurement initiative. The M-Lab
infrastructure consists of a high number of servers disteith
globally in multiple provider networks and geographic oats,
mostly in the US. M-Lab makes all data available, including
packet traces and supplementary path measurements data.
The raw data files are publicly available through Google’s
BigQuery and Cloud Storage, see https://console.cloud)igo

The third group of features, referred to Bg, includes 44  com/storage/browser/m-lab/.
features relevant to the prediction@fg RTTr(t+<). Fc fea-
tures account for the statistical properties (avg, min, rag
percentiles) of the 4 RTT metrics reportedtinacer out e
measurements, namely the average, minimum, maximum a
standard deviation of thier acer out e RTT. In addition,F
also includes the current value of acer out e RTT metrics

The analyzed dataset corresponds to the first week of
January 2016. During this week, we observe more than
néh‘S0,000 different paths, sampled through Parigcer out e
measurements from more than 180 geo-distributed servers.
Unfortunately, not all of these paths are periodically skup
: ; ) during this week, as M-Lalt r acer out e measurements
at tme ¢, i.e., avgRTTp(t), minRTTp(t), mazRTTp(t) 40 normally triggered as part of other experiments; indeed
anddevRTTp(t). :

when analyzing the number o¢fr acer out e measurements

As we show next, these features are highly correlatedor each of these paths, we found that only 15,725 paths

to the corresponding prediction targets, resulting in angr have been sampled more than 10 times, and only 2346 paths

forecasting power. have at least 10Q r acer out e associated measurements
during the analyzed week. We use 100 as threshold to avoid
IV. NETPERFTRACE ANALYSIS & PERFORMANCE reducing the useful dataset even more, but naturally, theemo

_ ) ) ) t racer out e measurements or samples we have for a path,
In this section, we present an in-depth analysis of thehe higher the visibility on potential route changes. Hgvi90
performance achieved by NETPerfTrace, considering @iffer samples in a week means a minimum path sampling rate of
machine learning models. Firstly, we introduce the evanat onet r acer out e every 100 minutes, which is quite low but a
dataset and study the correlation among input featuresi@nd p good starting point for the different analyses. Actuallg thne

diction targets. Next, we benchmark several machine legmi betweent r acer out e measurements in the resulting dataset
models and select the one which fits the best our prediction

goals. Finally, using the best machine learning model, we !https://www.measurementlab.net/
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is below 14 minutes for more than 50% of the measurement:

and for more than 40% of the paths, the sampling rate is aboy g 0,5 __ i

onetraceroute every 20 minutes. The total number of G S .

t racer out e measurements in the resulting filtered datase o

is above 550,000. 05 (L7 B P ] e
Regarding paths topology, the resulting 2346 paths an 5 1 e

issued from 82 different sources, distributed in 33 differe & ¢

ASes to about 2000 different destinations in 125 different 5

ASes. These paths traverse more than 260 different ASes, ai § 0

have an average length of 10 hops and 4 ASes.

|
o
3

=

For each of these 2346 patlts we compute the distribu-
tion of the aforementioned input features during an obgenva
period Tje..., = 1 week. Note that while we use the full
week of measurements to compute the input features fc
NETPerfTrace, all performed evaluations in this paper areed
on a 10-fold cross-validation basis, to avoid biased result

B «vgRTTE

o

PLCCavgRRTp
o
o

o

10 20 30 40 50 60 70
Feature index

B. Initial Feature Analysis

Let us start by analyzing the correlations among inpufigure 1. Linear correlation between input features andthee prediction
features and prediction targets. This would let us perform e for feature, seta, I and Fe. ,
first raw selection of features for each prediction targés. F Benchmarking results are reported in Tabs. I, Ill, and
1 depicts the Pearson linear correlation coefficients (PY)cc IV for the three prediction targets respectively. Treeduas
between the full set of input features and the three premticti Predictors perform the best. For the three targets, RF rsodel
targets, discriminated by feature $8i, Fz and Fi. The set  Yield the lowest MAE and RMSE, and also the lowest MRE
is extended by adding the three prediction targets, whieh arin Most cases. Interestingly, different models are not Bygua
flagged by a PLCC = 1 in the corresponding plot. As expecteowe” suited for the three p_redlctlop .problems. For instance
features from each set present high positive correlatidhgéo SVR performs very badly in predicting, and avgRTTp,
corresponding prediction target. Features from $atendF ~ Put highly improves in forecastingcp,. The analysis also
are inversely correlated to targetsp, and R, respectively, conf|rm_s our intuition that we are not confronted with linear
which is coherent with the fact that more stable paths witrf€dression problems, as both LR and BRR models are clearly
smaller number of changes have longer life times. In adujitio utPerformed by RF models.

there is negligible correlation between path stability path When comparing the performance for each of the three
performance; indeed, features from d&t are very weakly prediction targets, we observe that predicting béth and
correlated to target®, andrcp,., and features from sets, avgRTTp is more challenging than predictingp,.. Indeed,
and Fp are very weakly correlated tovg RTTp. PLCCs are much higher and MREs much smaller in the latter

Based on these initial observations, we shall considef@se. In particular, and as already pointed out by previark w
each set of features”s, Fp and Fo as individual in- [10], [11], predictingR,. is difficult and error-prone.

puts to predict 2., rcp, and avgRTTp respectively: Note that, in the case ofcp, prediction, we might have
R,(t) = NETPerfTraceFa), rcp, = NETPerfTraceFz),  zero route change slots for whickep, = 0; indeed, the
andavgRTT p(t+¢) = NETPerfTracéF) for the rest of this  fraction of stable routes is not negligible. About 25% of the
section. Later on we show in Sec. V that a more careful featur@4hours time slots correspond to zero route change slokein t
selection can improve the performance of NETPerfTrace. studied dataset. We leave those cases out of the computédtion
the MRESs, and treat them independently. For this reason, Tab
C. Benchmarking Different ML Models [l includes two additional metrics: the True Predictiont®a
Cf;PR) when predicting zero route-change slots - ;RRand

We now evaluate different machine learning models to findhe TPR for all predictions - TPR. RF models achieve the
the most appropriate one for NETPerfTrace. We benchmar, st MREs - 16% with almost perfect alignment between

seven different machine learning regression models, @il o5 and predicted values, and both MAEs and RMSEs are

) . . Gelow 1 route change. They correctly predict 38% of the zero
trees, support vector machines for regression with a Gauggte.change slots, and achieve an overall TPR of 60%. The
sian kernel (SVR), Bayesian ridge regression (BRR), lineag; p model yields a surprisingly high TRR= 90%, but the

regression (LR), and multi-layer perceptron neural neksOr i er error metrics are poor, suggesting potential oviewitt
(MLP). We compare these algorithms on the basis of PLCC poor, sugg gp Ve

coefficients, mean absolute error MAEr#ean (| X — X |), root Besides prediction performance, Tab. IV additionally re-
ports the total computation time taken by each model in the

mean squared error RMSE V/me‘m((AX —X)?), and mean 1 fo14 cross-validation process, for the specific predicof
relative absolute error MRE #mean(|X — X|/X), whereX  qugRTTp (similar results were obtained for the other two
and X are real and predicted values respectively. The MAERargets). Computations were performed in a single machine
metric penalizes all the errors equally, whereas the RMSEquipped with two Intel Xeon E5-2650 v4 processors (30M
metric puts a relatively high weight on larger errors. Cache, 2.20 GHz) including 12 physical cores and 128 GB of




Model PLCC | MAE(s) | RMSE (ms) | MRE (%) V. IMPROVING NETPERFTRACE BY FEATURE SELECTION
BRR 0.86 315 177 466
LR 0.86 315 178 466 In this section, we analyze in more detail the relevance of
CART 0.81 23.7 154 244 each of the used input features in terms of prediction power,
RF (10 trees) | 0.86 21.0 145 230 and apply different feature selection techniques to sdleet
RF (100 trees) | 0.87 20.7 144 230 most relevant ones for each prediction target. We consider
MLP 0.89 26.5 163 446 two different feature selection approaches: a filter apghoa
SVR 0.19 58.1 241 335 based on mutual information, and a wrapper approach based
Table . BENCHMARKING OF DIFFERENT MODELS FOR PREDICTING on a RF10 model. Whereas feature selection based on filter
ROUTE RESIDUAL LIFE TIME. approaches evaluates the worth of a subset of featuresdéndep

dently of the considered prediction model, wrapper apgreac
RAM. Out of the seven models, five required less than thregank features based on their prediction power for a specific
minutes, while the MLP took approximately half an hour andprediction model, in this case RF10.
the SVR even more than one day. This clearly shows that
SVR is not suitable when the learning phase should be done . o
in near real-time, for example, when targeting a more dynami A Feature selection within independent feature sets

periodic learning approach. We start by selecting the most relevant features from

As a general conclusion, and based both on predictior‘?""ch independent feature sEj, Fp and Fc, for the three

performance and computational speed, we select RF as the u%orrespondlng prediction targets. As expected, both featu

derlying prediction model for NETPerfTrace. In particihae

selection approaches do not assign the same importance to
take a RF model with 10 trees (RF10), which achieves almos(faCh feature. In general terms, the wrapper approach is the
the same performance as RF100, with a much smaller and le

ost discriminative one, as it clearly splits the three ingmts
complex structure. This model will remain the core predicti

etween relevant and irrelevant or less powerful featubes.
engine used by NETPerfTrace for the rest of the paper. Nexf,h

e contrary, filter-based selection does not provide a det
we present a more detailed evaluation of NETPerfTrace usin vealing the most relevant features. For example, wrapper

ased selection takes the average number of route changes
the RF10 model, in T and the tail of its distribution as the most relevant
features to predictcp,. Also features providing information
about the currently observed route (e.g., route age), tiote s
D. NETPerfTrace Performance with RF10 Prediction Model (e.g., current number of route changes) dndacer out e
sample (e.g., curreatvg RT'Tp) are among the most important
Fig. 2 presents a closer look into the prediction perfor-features.
mance achieved by NETPerfTrace using RF10 as the under-
lying model, and input features sefsy, Fz and Fo for
predicting R,., rcp, and avgRTTp respectively. Figs. 2(a)
and 2(d) report the (a) normalized real and predicted valueg

for R, and (d) the distribution of the relative prediction errors.Wrapper approach and (ii) the top 5 features selected by the
i 0,
NETPerfTrace correctly predict®, for about 20% of the filter approach. Fig. 3 depicts the obtained results in terms

samples, and achieves relative prediction errors belowdl00 of relative prediction errors for (al, (¢), (b) rep, and (c)

for more than 70% of the samples. As reported in Tab. Il, the ; '
; vgRTTp. While the top 5 features selected by filter-based
fact that the RMSE is much smaller than the MAE shows thagelection drastically reduce prediction performance fog t

NETPerfTrace predicts shorter residual life times wordgctv three prediction targets, those features selected by wrapp

s confirmed by Fig. 2(a). Finally, we found that NETPerfkeac based selection provide almost the same results as the empl

underestimates,. for about 40% of the samples. input setst'4, Fp and F respectively. This shows that many

Oof the input features used within each independent feattre s
are irrelevant for the prediction of each of the three target
In particular, 6 out of 11 features for séts, 9 out of 14

To verify the relevance of the selected features by both
approaches, we compare the performance of NETPerfTrace
sing as input all the features of each independent set stgain
) the top 5 features of each feature set as selected by the

Figs. 2(b) and 2(e) report the (b) normalized real an
predicted values forcp, and (e) the distribution of the relative
prediction errors. Relative prediction errors are smalithw
about 70% of the samples being perfectly predicted and mor@aturgs. for sef’s and 39 out Of. 44 features for sé¢: have
than 90% of them with relative errors below 50%. As we said® negligible impact on the prediction performance.
before, zero route-change cases are not included in Fijy. 2(e
and the model correctly predicts 38% of the zero route-ceangg, Feature selection using the full feature set
slots, achieving an overall TPR of 60%.

So far, we have tested NETPerfTrace using a split of

Finally, Figs. 2(c) and 2(f) report the (c) normalized real features into group$’s, Fsz and F. However, based on the
and predicted values farvg RTTp and (f) the distribution of initial feature correlation results reported in Fig. 1, rhas
the relative prediction errors. In this case, relative mioh  strong correlation between features of grdupand F'g for the
errors are almost zero for about 50% of the samples, and beloprediction of bothR, (t) andrcp,., which could be exploited
30% for almost 90% of them. Given thatg RTTp values are  to improve prediction performance. We therefore explore no
in general very small - below 130 ms for more than 75% ofthe performance of NETPerfTrace when using as input the full
the samples, such small relative prediction errors arelpigh set of 69 input featureg’y U Fig U Fo, and perform wrapper-
satisfactory. based feature selection on top of this full set.



Model PLCC | MAE #) | RMSE (#) | MRE (%) TPRore (%) | TPR,. (%)
BRR 0.96 3.89 1.97 48 34 17
LR 0.96 3.89 1.97 48 34 17
CART 0.99 0.89 0.94 16 38 60
RF (10 trees) 1.00 0.88 0.94 16 38 60
RF (100 trees) | 1.00 0.87 0.94 16 38 60
MLP 0.96 4.01 2.00 51 62 91
SVR 0.96 3.47 1.86 42 74 30
Table III. BENCHMARKING OF DIFFERENT MODELS FOR PREDICTING THE NUMBERPROUTE CHANGES IN THE NEXT24H TIME SLOT.
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Figure 2. Real vs. predicted values for the prediction of Ra)t), (b) rcp, (t) and (c)avgRTTp(t). Relative errors for the prediction of (d-(t), (€)
rcpy (t) and (f) avgRTTp (t). NETPerfTrace uses RF10 and input features $éfs Fip and F¢ for predicting R, rcp;, andavgRTTp respectively.
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Figure 3. Relative errors for the prediction of (B)-(t), (b) rcp, (t) and (c) RTTp(t + €) using all the features of each independent set against thé to
features selected by the wrapper approach and the top Sdeatalected by the filter approach.

Tab. V reports the top 5 features selected by wrapper-baséhe other three are related to the number of route changes,
selection out of the full set of features - we refer to these ascluded in Fg. We can see that features iy also help
5/69 features, for the three prediction targets. We canlyeasi estimatercp,.. However, as expected, features in 8gt play
spot out that the most important features are not necegsarib significant role only for the prediction efvg RTTp.
the ones included in the subsdts, Fz, and F. A striking

example are the top five features selected for prediding): To verify the prediction properties of the selected feature
only two out of the five features were already in the suliéet  Fig. 4 reports the relative prediction errors for (@)(t), (b)



Madel PLCC | MAE (ms) | RMSE (ms) | MRE(%) | CT®) | nutshell, the NN4 algorithm of DTRACK works as follows:
BRR 0.69 25.2 5 186 — first, the feature space is partitioned into polyhedronscivhi
LR 0.69 252 5 186 9 number of dimensions is equal to the number of features. The
CART 0.54 274 52 140 31 bin boundaries of the different features are chosen as lgqual
RF (10 trees) | 063 51 51 139 28 spaced percentiles. In the performed evaluations we set the
RF (100 trees) | 0.63 ad 5 138 180 number of bins for each feature to 10, as chosen by the authors
MLP 0.70 323 57 142 228 | jn [10], [11]. The discretization process goes as followa: f
SVR 0-38 39.8 63 53 928 | each feature, the first bin contains the samples which value i

Table IV. BENCHMARKING OF DIFFERENT MODELS FOR PREDICTING below the 10th percentile, the second bin the values between
THE AVERAGE RTT OF THE NEXT TRACEROUTE MEASUREMENT. the 10th and the 20th percentiles, and so on. Tar@(g)

rcp, and (¢) avgRTTp, when considering (i) the features andrcp, are predicted for draceroute _samples as the_ _
on each independent set (i.E4, Fz and Fg), (ii) the full average of the real values of these metrics over the training

set of 69 features and (jii) the top 5/69 features reported is@MPples contained in the the polyhedron including the featu
Tab. V. The performance increase for the predictiorRoft) vector ofs. This algorithm is basically equivalent to a decision

w.rt. the one achieved with", features is astonishing, and tré€ with a fixed choice of thresholds.

just by using the top 5/69 features there is a major reduction The comparison of NETPerfTrace vs. DTRACK is per-
in the relative prediction errors. Indeed, Fig. 4(a) shohatt formed along three distinct dimensions: features, model an
relative predlctlon errors are almost zero for about 30%hef t system. Firsﬂy’ we compare the input features used by both
samples with 5/69 features, and below 60% for about 80%ystems, using a NNX model (X = 4 for DTRACK and X
of the samples. The MAE obtained with 5/69 inputs is 6.2=" 5 for NETPerfTrace) and a RF10 model; secondly, we
seconds, which is more than 3 times smaller than the MAE tompare the properties of the underlying prediction mqdels
21 seconds attained withy features (cf., Tab. Il). There is py using NETPerfTrace input features and the two different
also a significant improvement in the other evaluation rastri prediction models - NN5 and RF10; finally, we directly com-

the PLCC goes up to 0.98, the RMSE decreases from 145 nisare NETPerfTrace and DTRACK systems, using their default
to 79 ms, and the MRE goes down from 230% to 70%. USlng:onfigurations (i'e', models and input features)_

the full set of 69 features reduces even more the MAE and the
RMSE - by about 20%, but there are no significant changes il NETPerfTrace features vs. DTRACK features

the relative prediction errors, thus it is not worth consiig
such a huge input set. Fig. 5 compares the performance of NETPerfTrace and

. L DTRACK using their corresponding input features and NNX
Regarding the estimation ofcp,, 4(b) shows that the oq nqerlying prediction model. As shown in Fig. 5(a), there
top 5/69 features do not provide any relevant improvemeng v 4 slight reduction on the relative prediction errtos
w.r.t. Fip features. However, in this case there is a significant, (t) when using NNX with NETPerfTrace top 5/69 input
improvement when considering the full set of 69 featuresfe:a\tures (NPT-NN5) as compared to DTRACK features. Still,

Overall, the TPRc increases from 60% (cf., Tab. lll) 10 NpT.NN5 achieves a MAE of 20 seconds whereas DTRACK’s
83%, and the distribution of relative prediction errorswho \AE = 33 seconds meaning a dramatic reduction. In addition

an important decrease. Still, for the sake of reducing thgpT-NN5 shows a PLCC = 094 vs. a PLCC = 0.81 for

model complexity and the number of input features, the fina TRACK. Fig. 5(b) shows that the performance improvement
release of NETPerfTrace uses the top 5/69 features as inpyt. ,ch more relevant when considering the prediction of

Finally, @”0_' as expected, there are no significant chr_:mges 'rncPT. NPT-NNS5 correctly predicts more than 25% of the non-
the prediction performance ofugRTTp when using either ;10 change time slots, while DTRACK does it for only 10%.
the top 5/69 or the full set of features. For TPR)., NPT-NN5 rounds 47% of correct predications,

As a general conclusion of the feature selection analysigyhereas DTRACK's TPR.. = 2%.

besides using RF10 as underlying prediction model, the final Repeating the same evaluations but using RF10 as un-
implementation of NETPerfTrace uses the top 5/69 feat”reﬁerlying prediction model shows better results for bothuinp

reported in Tab. V as input for the prediction of the three, i1 sets. DTRACK's MAE for, (t) prediction decreases

corresponding targets. from 33 seconds to 16 seconds when using RF10, whereas
NETPerfTrace attains a MAE = 6 seconds. Interestingly,
VI. NETPERFTRACE VERSUSDTRACK DTRACK becomes slightly better than NETPerfTrace when

Now that we have finally found the best configurationit comes to predictcp,, but without a relevant difference.

of NETPerfTrace for path dynamics and performance pre- ag 4 first conclusion, the top 5/69 features used by NET-

diction, we compare its performance with the state of theperfrrace provide in general much better results than those
art. In particular, we compare NETPerfTrace to DTRACK ;5ed by DTRACK.

[10], [11]. DTRACK predicts only path dynamics and not

path performance, as its focus is on the predictionRpft) :

andrcp,. The system uses a Nearest Neighbors (NN) baseg' NNS vs. RF10 with NETPerfTrace

model as underlying prediction model, and takes as input the We now compare the prediction power of the two under-
four features described in Tab. VI. Note that the teroate  lying models used by NETPerfTrace and DTRACK, using
prevalence corresponds to the proportion of time a certainas input the top 5/69 features used by NETPerfTrace by
route is active. The authors of [10], [11] named their altjoni  default. Fig. 6 shows a significant performance improvement
as NN4, as it works on four aforementioned features. In avhen using NETPerfTrace’s RF10 model as compared to
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Figure 4. Relative errors for the prediction of &)-(t), (b) rcp,.(t) and () RT'Tp(t + ) using all the features of each independent set against theetu
of 69 features and the top 5 features selected by the wrajppeoach out of the full set (i.e., 5/69).

Top 5 features Residual life time # route changes in timeslots average RTT
#1 feature # route changes in current time slot head distribution # route changes| mean(avgRTTp)
#2 feature route age of current route avg. # route changes in time slotg currentavgRTTp
#3 feature max. of all D(r;) total # route changes currentmax RTT
#4 feature route change binary flag # route changes in current time slgt  currentmin RTT
#5 feature current # route changes in present time s|ot avg. of D(r;), Vr; € P route age of current routg

Table V. FEATURE SELECTION FOR THE THREE PREDICTION TARGETS WHEN CONSERING ALL THE 69 FEATURES

route age of route 100 100

prevalence of route in current time slot 90r 90
80 80
70 70
60 60
50 50
40 40
30 30

20 "." -=-DTrack 20 ..." - --DTrack
10f —NETPerfTrace 10f — NETPerfTrace|

number of previous occurrences of route
in current time slot for pathP
total number of route changes in current time slet #,.) for path P

Table VI. FEATURE SET USED BYDTRACK

% samples
% samples

100 % 10 20 30 40 50 60 70 80 90 100 % 10 20 30 40 50 60 70 80 90 100
90 relative prediction error (%) relative prediction error (%)
80 (@) NPT vs. DTRACK forR,. (). (b) NPT vs DTRACK forrcpy,.
o 70 T
é 60 i~ - ﬁa Figure 7. NETPerfTrace vs. DTRACK. NETPerfTrace largelytpeuforms
g ig ‘ " g DTRACK for predicting path dynamics.
o i g B3
B + .
ig ot i — DTrack 70% of the samples, RF10 predicts the correct number of non-
ol A2 :ﬁera_clslNS wl’ — NPT-NN5 zero route changes, which drops to only 25% for NN5. The
00 10 20 30 40 50 60 70 80 90 100 O0 10 20 30 40 50 60 70 80 90 100 predICtlon pOWEI‘ Of RFlO can be further underllned by the
relative prediction error (%) relative prediction error (%) achieved MAE, which is as low as 0.92 vs. 3.55 for NN5.
(@) NPT-NN5 vs. DTRACK forR,.(t). (b) NPT-NN5 vs. DTRACK forrcp..

As a second conclusion, the prediction model used by

Figure 5. Performance of NETPerfTrace using NN5 vs. DTRACK. NETPerfTrace clearly outperforms the one used by DTRACK.

100 100
% % —— == C. NETPerfTrace vs. DTRACK
80 80 _
g 7 g 7O Rl To conclude the comparison, we now focus on the per-
2 ol o formance of both NETPerfTrace and DTRACK systems using
8 a0 E ] their default configurations in terms of model and input fea-
S a0 oL/ PTG tures. Fig. 7 clearly shows that NETPerfTrace largely outpe
2 /,." == =NPT-NN5 o — NPT-RF10 forms DTRACK for predicting path dynamics. According to
o ISR ol e FiD. 7(a), NETPerfTrace can predi(¢) with relative errors
relative prediction error (%) relative prediction error (%) below 10% for about 50% of the Samp|ES, whereas DTRACK
(2) NPT-NN5 vs. RF10 forR,.(t). (b) NPT-NN5 vs. RF10 forcpy,. only does so for 10% of the samples. In addition, almost 30%

of the predictions with NETPerfTrace yield a relative error
close to zero, whereas almost no zero relative predictimrer
DTRACK’s NN5 model. For example, Fig. 6(a) shows that are observed for DTRACK. The PLCC of NETPerfTrace has a
about 30% of the relative prediction errors are close to 0%value of 0.97 while the one attained by DTRACK is only 0.81.
when using RF10, whereas almost no zero relative predictioRinally, NETPerfTrace’s MAE is almost 80% smaller than the
errors are observed for NN5. Fig. 6(b) shows that for nearlyone obtained by DTRACK.

Figure 6. Performance of NETPerfTrace using NN5 and RF10etsod



In terms of daily route changes, Fig. 7(b) shows that [7]
NETPerfTrace correctly predicts almost 70% of the non-zero
route changes, whereas DTRACK falls to correctly predict
only 10% of the changes. Overall, NETPerfTrace predicts the
correct number of route changes TRRor about 65% of the
samples whereas DTRACK correctly does it for only 8% of
the samples. Finally, the MAE is below 1 for NETPerfTrace
and above 5 for DTRACK. [9]

(8]

As a general conclusion, presented results evidence that
NETPerfTrace largely outperforms DTRACK when forecast-
ing both R,.(t) andrcp,., by using only one additional feature
to tackle both prediction problems. On the one hand, thig!®l
is explained by the better prediction power of the selected
features. Note that we have selected specific feature gettssfo [11]
prediction of R,.(t) andrcp, respectively, whereas DTRACK
uses the same set of features for predicting both targets. On
the other hand, NETPerfTrace relies on a much more powerfui 2]
prediction model than DTRACK, which greatly contributes to
the overall high accuracy of the system.

[13]

VII. CONCLUDING REMARKS

In this paper, we have addressed the problem of prepgs
dicting Internet path changes and path performance using
t racer out e measurements and machine learning models.
We have introduced and evaluated NETPerfTrace, an Internet
Path Tracking system capable of forecasting (i) the remgini
life time of a path before it actually changes, (ii) the dailym-
ber of path changes in the next day and (iii) the average RTT
of the nexttracer out e measurement with relatively high
accuracy. By carefully engineering NETPerfTrace undadyi
model and input features, we have shown that NETPerfTrace
highly outperforms DTRACK, a previous system with the same
prediction targets. In particular, NETPerfTrace outperfe
DTRACK by a factor of 5 when forecasting the residual
lifetime of a path with relative prediction errors below 10%
and by a factor of 7 in correctly predicting daily path change
As an additional contribution, we have released NETPeddra
as open software to the networking community.

[15]
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