
Predicting Internet Path Dynamics and Performance
with Machine Learning

Sarah Wassermann∗, Pedro Casas†, Thibaut Cuvelier∗, Benoit Donnet∗

∗Université de Liège, Belgium
sarah.wassermann@student.ulg.ac.be, tcuvelier@ulg.ac.be, benoit.donnet@ulg.ac.be

†AIT Austrian Institute of Technology, Austria
pedro.casas@ait.ac.at

Abstract—In this paper, we study the problem of predicting
Internet path changes and path performance usingtraceroute
measurements and machine learning models. Path changes are
frequently linked to path inflation and performance degrada-
tion; therefore, predicting their occurrence is highly relevant
for performance monitoring and dynamic traffic engineering.
We introduce NETPerfTrace, an Internet Path Tracking system
capable of forecasting path changes and path latency variations.
By relying on decision trees and using empirical distribution
based input features, we show that NETPerfTrace can predict
(i) the remaining life time of a path before it actually changes
and (ii) the number of path changes in a certain time-slot with
high accuracy. Through extensive evaluation, we demonstrate that
NETPerfTrace highly outperforms DTRACK, a previous system
with the same prediction targets. NETPerfTrace also offerspath
performance forecasting capabilities. In particular, it can predict
path latency metrics, providing a system which could not only
predict path changes but also forecast their impact in termsof
performance variations. As an additional contribution, werelease
NETPerfTrace as open software to the networking community.

Keywords—Traceroute; Machine Learning; Prediction; Bench-
marking; M-Lab; DTRACK.

I. I NTRODUCTION

Internet paths change frequently due to inter/intra-domain
routing changes, load balancing and even misconfigurations
and failures [1]. Some of these changes can seriously disrupt
performance, causing longer round-trip times, congestion, or
even loss of connectivity [2]. For example, in [3], Google
reports that inter-domain routing changes caused more than
40% of the cases in which clients experienced a latency
increase of at least 100 ms. These changes could not only
impact the QoE of the end users, but also might turn to be
quite costly: Amazon claims that every additional 100 ms of
page load time could cost them 1% of their sales [4], and
that a page load slowdown of just one second could turn into
a $1.6 billion loss in sales each year [5]. Google has also
calculated that, by slowing their search results down by 400
ms, they could lose 8 million searches per day, meaning they
would serve up many millions fewer advertisements [5]. As
such, predicting the time when a path is likely to change, as
well as how such a change would impact end-to-end latency,
becomes a highly relevant problem in practice.

The research leading to these results has been partially funded by the
Vienna Science and Technology Fund (WWTF) through project ICT15-129,
“BigDAMA”.

The most common approach to analyze Internet paths in
the large-scale is by relying on active measurements. Systems
such as DisNETPerf [6], iPlane [7], Reversetraceroute [8]
and Sibyl [9] are all distributed measurement systems which
rely ontraceroute measurements to monitor Internet paths
performance. Analyzing the performance of a certain path
through active measurements requires to regularly measure
or sample the path, by periodically launching traceroutes to
retrieve relevant metrics. However, there is a constraint in
how often measurements are performed, trading the accuracy
of the analysis with the probing resource budget. As such,
monitoring a large number of Internet paths through active
measurements requires some smart ways to allocate a pre-
defined probing budget. In particular, a desired property of
an efficient path-sampling scheduling approach is to allocate
measurements with finer granularity for more dynamic paths,
and around those specific times when relevant path changes
(i.e., causing performance degradation) are close to happen.

To this end, and similar to [10], [11], we propose to predict
the time when a path change would occur by relying on
traceroutemeasurements and supervised machine learning
prediction models. We introduce NETPerfTrace, an Internet
Path Tracking system capable of predicting paths with higher
chances of change, forecasting the most likely time when
these paths would actually change, as well as predicting
their future path latency. Extensive evaluations using highly
distributedtraceroute measurements from M-Lab show
that NETPerfTrace perfectly predicts (i) the remaining life
time of a path (i.e., the time before a path change) in about
30% of the cases, (ii) the exact number of daily path changes
in about 70% to 80% of the cases, and (iii) the average
RTT of a path in about 50% of the cases. In addition, we
show that NETPerfTrace highly outperforms DTRACK [10],
[11], a previous system conceived to predict Internet path
changes. In particular, NETPerfTrace outperforms DTRACK
by a factor of 5 in forecasting the residual lifetime of a path
with relative prediction errors below 10%, and by a factor of7
in correctly predicting daily path changes. A closer look into
results reveals that the input features used by NETPerfTrace
have better forecasting power than those used by DTRACK,
and that the selected prediction model is by far much better
for the prediction task.

NETPerfTrace relies on a standard random forest model for
prediction, which provides highly accurate results with very
low computational overhead as compared to other evaluated
models. In particular, we benchmark six different regression

models - including random forests, neural networks, SVM, lin-
ear regression, decision trees and bayesian regression, and se-
lect the best one for NETPerfTrace. We also perform extensive
evaluation on the impact of different input features, studying
the correlations between inputs and prediction targets, aswell
as by using wrapper and filter feature selection techniques.

NETPerfTrace is open-source and freely available on
GitHub at https://github.com/SAWassermann/NETPerfTrace.
The datasets used in this paper are also available at the GitHub
repository, making all the results fully reproducible. We are
currently extending our tool DisNETPerf [6] by adding an
automatic approach todynamically adapt the sampling rate of
a path based on the remaining time until a next path change,
similar to [10].

The remainder of this paper is organized as follows:
Sec. II briefly reviews the related work. Sec. III describes the
basic concepts behind NETPerfTrace, including the prediction
targets and the corresponding input features. Sec. IV presents
the benchmarking results related to the evaluation of multiple
machine learning models, and reports initial results for NET-
PerfTrace using the most accurate model. Sec. V evaluates
the impact of different input features, using multiple feature
selection techniques. Sec. VI reports the results obtainedin
the comparative evaluation of NETPerfTrace and DTRACK.
Finally, Sec. VII concludes this work.

II. RELATED WORK

There is a very rich literature in the problem of using
traceroute measurements to track Internet path dynamics
and performance. Since the early work of Paxson on the
analysis of end-to-end Internet routing behavior [1], multiple
research efforts have targeted the study of Internet paths
at the large scale. Paxon’s study was one of the first us-
ing a reasonably large number of distributedtraceroute
measurements to analyze relevant Internet routing and path
properties such as stability, symmetry, and pathologies leading
to performance degradation such as routing loops, miscon-
figurations and failures. He concluded that while Internet
paths are heavily dominated by single long-lasting routes,the
time periods over which routes persist show wide variation,
ranging from seconds up to days. Closer in time, authors in
[12] reappraised Paxson’s results using larger datasets, and
concluded that Paxson’s observations on path stability still
hold.

Systems such as DisNETPerf [6], iPlane [7], Reverse
traceroute [8] and Sibyl [9] are all distributed measure-
ment systems which rely ontraceroute measurements to
track and predict Internet paths performance. DisNETPerf and
Reversetraceroute particularly target the problem of mea-
suring paths from arbitrary selected sources. iPlane and Sibyl
both offer a service for predicting the performance of Internet
paths, by building a structural model of the Internet using
traceroute and opportunistic measurements. In a nutshell,
these systems combine multiple historicaltraceroute mea-
surements with prediction techniques to reconstruct measure-
ments on segments not necessarily measured before.

While the problem of analyzing path changes at the Internet
scale has attracted important attention in the past, only few
papers have focused on predicting such path changes [2], [3],

[10], [11], which is the target of this paper. Papers such as
[2], [3] study the potential causes leading to Internet path
changes, particularly those causing highly increasing latency
[3]. Close to our work, authors in [10], [11] study the problem
of predicting path changes using bothtraceroute measure-
ments and machine-learning based predictors. In particular,
they develop a model based on K nearest-neighbors to predict
both the remaining time of a established path before a change
and the number of changes experienced by a path on a certain
time period. Our work builds on these papers, using different
modeling techniques and different input features for prediction.

Finally, in terms of predicting end-to-end path performance
using machine learning models, papers such as [13], [14] build
models to predict the RTT of a TCP connection at a small
time scale, to better optimize the TCP protocol. Our path
latency prediction problem is similar, but our target is on path
performance and not on TCP optimization. In addition, we
operate at the time granularity provided by thetraceroute
-based sampling of a path, and not at a per RTT granularity
provided by a TCP connection.

This paper is an extension of our early work on path dy-
namics and performance prediction [15], where we presented
some first results of the techniques described next.

III. PREDICTING PATH CHANGES & PERFORMANCE

In this section, we introduce some basic definitions to
formulate the corresponding learning and prediction problem
behind NETPerfTrace. We define a pathP as a sequence of
links connecting a certain fixed sources to a fixed destination
d. At any timet, pathP (t) is realized by a specific router: this
route consists of a specific sequence of links connectings to d,
and has an associated initial timet0 when the route becomes
active or in-place, and a final timetf which corresponds to the
time whenr changes to another route realization, i.e., when the
actual route changes. From now on, we therefore refer to route
changes instead of path changes. As such, a pathP (t) can be
considered as a statistical time process, composed of a set
of time-contiguous routesri(ti0, t

i
f), each one with a duration

D(ri) = tif − ti0. For the sake of notation, we say thatri ∈ P .

We additionally define the duration of a router asD(r) =
tf − t0, its current life time orroute age at timet asLr(t) =
t− t0, and its remaining life (i.e., time before a route change)
at time t asRr(t) = tf − t. Finally, we definercP (t) as the
total number of route changes observed so far at timet for
pathP andrcPT

(t) as the number of route changes observed
so far at timet for pathP in the current time-slotT .

Given a newtraceroute measurement at timet, the
prediction problem solved by NETPerfTrace includes three
prediction targets: (i) the remaining life timeRr(t) of route
r, namelyR̂r(t), (ii) the number of route changes a pathP
experiences over a specific future time-window of lengthT ,
defined asr̂cPT

, and (iii) the average RTT that pathP will
experience in the nexttraceroute measurement, defined
as ̂avgRTTP (t + ε), where ε represents the duration until
the next measurement. The first two targets correspond to
path dynamics prediction, whereas the third target consists of
path performance forecasting. In practice, whenR̂r(t) comes
closer to zero, we would increase the sampling rate to better

monitor the path performance in the event of a route change.
Predicting r̂cPT

allows to dynamically identify which paths
are more prone to frequent changes, and thus better allocate
new traceroute measurements. Based on previous results
on route stability [1], [12] and similar to [10], we focus on
predicting the number of daily route changes for the next
day, i.e.,T = 24 hours from now on. At last, predicting
the average RTT that a certain pathP would experience
next becomes highly relevant for dynamic traffic engineering
purposes, and when combined with the prediction of route
changes, it can provide a very powerful approach to forecast
those performance-harmful route changes. We do not explore
this combined analysis approach in this paper and leave it for
future work.

To predict these three targets we use a rich set of input
features describing the statistical properties of route dynamics
and path latency. Tab. I describe these features, separated
into three different groups. Note that we compute all these
features from the rawtraceroute measurements performed
in an observation learning periodTlearn of the monitored
paths, during which we extract the following statistics for
learning purposes. The first group of features, referred to as
FA, includes 11 features relevant to the prediction ofRr(t).
These features describe the statistical properties of the route
durationD(r) observed for each pathP . More precisely, we
compute the average duration of the corresponding routes, the
shortest and longest observedDr, and different percentiles for
this metric.FA also includes information about the currently
active router at time t, namely its route ageLr(t).

The second group of features, referred to asFB, includes
14 features relevant to the prediction ofrcPT

. FB features
take into account the statistical properties ofrcPT

, including
the average, minimum, maximum, and different percentiles,as
well as the total number of route changes observed inTlearn,
the total number of route changes in current time slotT , and
the number of route changes observed at timet within current
time slot T . A binary feature indicating the occurrence of a
route change in current time slotT is also included inFB .

The third group of features, referred to asFC , includes 44
features relevant to the prediction ofavgRTTP (t+ε). FC fea-
tures account for the statistical properties (avg, min, maxand
percentiles) of the 4 RTT metrics reported intraceroute
measurements, namely the average, minimum, maximum and
standard deviation of thetraceroute RTT. In addition,FC

also includes the current value oftraceroute RTT metrics
at time t, i.e., avgRTTP (t), minRTTP (t), maxRTTP (t)
anddevRTTP (t).

As we show next, these features are highly correlated
to the corresponding prediction targets, resulting in a strong
forecasting power.

IV. NETPERFTRACE ANALYSIS & PERFORMANCE

In this section, we present an in-depth analysis of the
performance achieved by NETPerfTrace, considering different
machine learning models. Firstly, we introduce the evaluation
dataset and study the correlation among input features and pre-
diction targets. Next, we benchmark several machine learning
models and select the one which fits the best our prediction
goals. Finally, using the best machine learning model, we

Residual Life Time Rr feature set (FA) 11

average ofD(ri), ∀ri ∈ P 1

minimum ofD(ri), ∀ri ∈ P 1

maximum ofD(ri), ∀ri ∈ P 1

5-, 10-, 25-, 50-, 75-, 90-, 95-percentiles ofD(ri), ∀ri ∈ P 7

Lr(t): route age of router at timer t for P 1

Route ChangesrcPT
feature set (FB) 14

average ofrcPT
in P 1

minimum of rcPT
in P 1

maximum ofrcPT
in P 1

5-, 10-, 25-, 50-, 75-, 90-, 95-percentiles ofrcPT
in P 7

total number of route changes inP 1

total number of route changes inP in T 1

rcPT
(t): number of route changes inP at timet in T 1

binary indication of a route change inT 1

Path Latency avgRTTP feature set (FC) 44

average ofRTT stats inP : mean (avg./max/min/dev RTT) 4

minimum ofRTT stats inP : min (avg./max/min/dev RTT) 4

maximum ofRTT stats inP : max (avg./max/min/dev RTT) 4

5-, 10-, 25-, 50-, 75-, 90-, 95-percentiles
28

of RTT stats (avg./max/min/dev RTT) in P

currentRTT stats (avg./max/min/dev RTT) at timet 4

Table I. FEATURE SET USED BYNETPERFTRACE. THE FULL SET

INCLUDES 69 FEATURES. FEATURE SETSFA , FB AND FC INCLUDE 11,
14 AND 44 DISJOINT FEATURES RESPECTIVELY.

assess the prediction power of NETPerfTrace by comparing
the real and predicted values for the three targets.

A. M-Lab Data Description

For the purpose of this study, we analyze a full week
of Paris-traceroute measurements performed through the
M-Lab1 open Internet measurement initiative. The M-Lab
infrastructure consists of a high number of servers distributed
globally in multiple provider networks and geographic regions,
mostly in the US. M-Lab makes all data available, including
packet traces and supplementary path measurements data.
The raw data files are publicly available through Google’s
BigQuery and Cloud Storage, see https://console.cloud.google.
com/storage/browser/m-lab/.

The analyzed dataset corresponds to the first week of
January 2016. During this week, we observe more than
450,000 different paths, sampled through Paris-traceroute
measurements from more than 180 geo-distributed servers.
Unfortunately, not all of these paths are periodically sampled
during this week, as M-Labtraceroute measurements
are normally triggered as part of other experiments; indeed,
when analyzing the number oftraceroute measurements
for each of these paths, we found that only 15,725 paths
have been sampled more than 10 times, and only 2346 paths
have at least 100traceroute associated measurements
during the analyzed week. We use 100 as threshold to avoid
reducing the useful dataset even more, but naturally, the more
traceroute measurements or samples we have for a path,
the higher the visibility on potential route changes. Having 100
samples in a week means a minimum path sampling rate of
onetraceroute every 100 minutes, which is quite low but a
good starting point for the different analyses. Actually the time
betweentraceroute measurements in the resulting dataset

1https://www.measurementlab.net/

is below 14 minutes for more than 50% of the measurements,
and for more than 40% of the paths, the sampling rate is above
one traceroute every 20 minutes. The total number of
traceroute measurements in the resulting filtered dataset
is above 550,000.

Regarding paths topology, the resulting 2346 paths are
issued from 82 different sources, distributed in 33 different
ASes to about 2000 different destinations in 125 different
ASes. These paths traverse more than 260 different ASes, and
have an average length of 10 hops and 4 ASes.

For each of these 2346 pathsP , we compute the distribu-
tion of the aforementioned input features during an observation
period Tlearn = 1 week. Note that while we use the full
week of measurements to compute the input features for
NETPerfTrace, all performed evaluations in this paper are done
on a 10-fold cross-validation basis, to avoid biased results.

B. Initial Feature Analysis

Let us start by analyzing the correlations among input
features and prediction targets. This would let us perform a
first raw selection of features for each prediction target. Fig.
1 depicts the Pearson linear correlation coefficients (PLCCs)
between the full set of input features and the three prediction
targets, discriminated by feature setFA, FB andFC . The set
is extended by adding the three prediction targets, which are
flagged by a PLCC = 1 in the corresponding plot. As expected,
features from each set present high positive correlation tothe
corresponding prediction target. Features from setsFA andFB

are inversely correlated to targetsrcPT
and Rr respectively,

which is coherent with the fact that more stable paths with
smaller number of changes have longer life times. In addition,
there is negligible correlation between path stability andpath
performance; indeed, features from setFC are very weakly
correlated to targetsRr andrcPT

, and features from setsFA

andFB are very weakly correlated toavgRTTP .

Based on these initial observations, we shall consider
each set of featuresFA, FB and FC as individual in-
puts to predict Rr, rcPT

and avgRTTP respectively:
R̂r(t) = NETPerfTrace(FA), r̂cPT

= NETPerfTrace(FB),
and ̂avgRTTP (t+ε) = NETPerfTrace(FC) for the rest of this
section. Later on we show in Sec. V that a more careful feature
selection can improve the performance of NETPerfTrace.

C. Benchmarking Different ML Models

We now evaluate different machine learning models to find
the most appropriate one for NETPerfTrace. We benchmark
seven different machine learning regression models, including
decision trees (CART), random forests (RF) with 10 and 100
trees, support vector machines for regression with a Gaus-
sian kernel (SVR), Bayesian ridge regression (BRR), linear
regression (LR), and multi-layer perceptron neural networks
(MLP). We compare these algorithms on the basis of PLCC
coefficients, mean absolute error MAE =mean(|X̂−X |), root

mean squared error RMSE =
√
mean((X̂ −X)2), and mean

relative absolute error MRE =mean(|X̂ −X |/X), whereX
and X̂ are real and predicted values respectively. The MAE
metric penalizes all the errors equally, whereas the RMSE
metric puts a relatively high weight on larger errors.

−0.5

0

0,5

1

0 10 20 30 40 50 60 70
0

0,5

1

Feature index

−0.5

0

0.5

1

FA FB FC

Rr

rcPT

avgRTTP

P
L

C
C
R

r
P

L
C

C
r
c
P
T

P
L

C
C
a
v
g
R
R
T
P

Figure 1. Linear correlation between input features and thethree prediction
targets, for feature setsFA, FB andFC .

Benchmarking results are reported in Tabs. II, III, and
IV for the three prediction targets respectively. Tree-based
predictors perform the best. For the three targets, RF models
yield the lowest MAE and RMSE, and also the lowest MRE
in most cases. Interestingly, different models are not equally
well suited for the three prediction problems. For instance,
SVR performs very badly in predictingRr and avgRTTP ,
but highly improves in forecastingrcPT

. The analysis also
confirms our intuition that we are not confronted with linear
regression problems, as both LR and BRR models are clearly
outperformed by RF models.

When comparing the performance for each of the three
prediction targets, we observe that predicting bothRr and
avgRTTP is more challenging than predictingrcPT

. Indeed,
PLCCs are much higher and MREs much smaller in the latter
case. In particular, and as already pointed out by previous work
[10], [11], predictingRr is difficult and error-prone.

Note that, in the case ofrcPT
prediction, we might have

zero route change slots for whichrcPT
= 0; indeed, the

fraction of stable routes is not negligible. About 25% of the
24hours time slots correspond to zero route change slots in the
studied dataset. We leave those cases out of the computationof
the MREs, and treat them independently. For this reason, Tab.
III includes two additional metrics: the True Prediction Rate
(TPR) when predicting zero route-change slots - TPR0rc, and
the TPR for all predictions - TPRrc. RF models achieve the
lowest MREs - 16% with almost perfect alignment between
real and predicted values, and both MAEs and RMSEs are
below 1 route change. They correctly predict 38% of the zero
route-change slots, and achieve an overall TPR of 60%. The
MLP model yields a surprisingly high TPRrc = 90%, but the
other error metrics are poor, suggesting potential overfitting.

Besides prediction performance, Tab. IV additionally re-
ports the total computation time taken by each model in the
10-fold cross-validation process, for the specific prediction of
avgRTTP (similar results were obtained for the other two
targets). Computations were performed in a single machine
equipped with two Intel Xeon E5-2650 v4 processors (30M
Cache, 2.20 GHz) including 12 physical cores and 128 GB of

Model PLCC MAE (s) RMSE (ms) MRE (%)

BRR 0.86 31.5 177 466

LR 0.86 31.5 178 466

CART 0.81 23.7 154 244

RF (10 trees) 0.86 21.0 145 230

RF (100 trees) 0.87 20.7 144 230

MLP 0.89 26.5 163 446

SVR 0.19 58.1 241 335

Table II. BENCHMARKING OF DIFFERENT MODELS FOR PREDICTING
ROUTE RESIDUAL LIFE TIME.

RAM. Out of the seven models, five required less than three
minutes, while the MLP took approximately half an hour and
the SVR even more than one day. This clearly shows that
SVR is not suitable when the learning phase should be done
in near real-time, for example, when targeting a more dynamic,
periodic learning approach.

As a general conclusion, and based both on prediction
performance and computational speed, we select RF as the un-
derlying prediction model for NETPerfTrace. In particular, we
take a RF model with 10 trees (RF10), which achieves almost
the same performance as RF100, with a much smaller and less
complex structure. This model will remain the core prediction
engine used by NETPerfTrace for the rest of the paper. Next,
we present a more detailed evaluation of NETPerfTrace using
the RF10 model.

D. NETPerfTrace Performance with RF10 Prediction Model

Fig. 2 presents a closer look into the prediction perfor-
mance achieved by NETPerfTrace using RF10 as the under-
lying model, and input features setsFA, FB and FC for
predicting Rr, rcPT

and avgRTTP respectively. Figs. 2(a)
and 2(d) report the (a) normalized real and predicted values
for Rr and (d) the distribution of the relative prediction errors.
NETPerfTrace correctly predictsRr for about 20% of the
samples, and achieves relative prediction errors below 100%
for more than 70% of the samples. As reported in Tab. II, the
fact that the RMSE is much smaller than the MAE shows that
NETPerfTrace predicts shorter residual life times worse, which
is confirmed by Fig. 2(a). Finally, we found that NETPerfTrace
underestimatesRr for about 40% of the samples.

Figs. 2(b) and 2(e) report the (b) normalized real and
predicted values forrcPT

and (e) the distribution of the relative
prediction errors. Relative prediction errors are small, with
about 70% of the samples being perfectly predicted and more
than 90% of them with relative errors below 50%. As we said
before, zero route-change cases are not included in Fig. 2(e),
and the model correctly predicts 38% of the zero route-change
slots, achieving an overall TPR of 60%.

Finally, Figs. 2(c) and 2(f) report the (c) normalized real
and predicted values foravgRTTP and (f) the distribution of
the relative prediction errors. In this case, relative prediction
errors are almost zero for about 50% of the samples, and below
30% for almost 90% of them. Given thatavgRTTP values are
in general very small - below 130 ms for more than 75% of
the samples, such small relative prediction errors are highly
satisfactory.

V. I MPROVING NETPERFTRACE BY FEATURE SELECTION

In this section, we analyze in more detail the relevance of
each of the used input features in terms of prediction power,
and apply different feature selection techniques to selectthe
most relevant ones for each prediction target. We consider
two different feature selection approaches: a filter approach
based on mutual information, and a wrapper approach based
on a RF10 model. Whereas feature selection based on filter
approaches evaluates the worth of a subset of features indepen-
dently of the considered prediction model, wrapper approaches
rank features based on their prediction power for a specific
prediction model, in this case RF10.

A. Feature selection within independent feature sets

We start by selecting the most relevant features from
each independent feature setFA, FB and FC , for the three
corresponding prediction targets. As expected, both feature
selection approaches do not assign the same importance to
each feature. In general terms, the wrapper approach is the
most discriminative one, as it clearly splits the three input sets
between relevant and irrelevant or less powerful features.On
the contrary, filter-based selection does not provide a clear cut
revealing the most relevant features. For example, wrapper-
based selection takes the average number of route changes
in T and the tail of its distribution as the most relevant
features to predictrcPT

. Also features providing information
about the currently observed route (e.g., route age), time slot
(e.g., current number of route changes) andtraceroute
sample (e.g., currentavgRTTP) are among the most important
features.

To verify the relevance of the selected features by both
approaches, we compare the performance of NETPerfTrace
using as input all the features of each independent set against
(i) the top 5 features of each feature set as selected by the
wrapper approach and (ii) the top 5 features selected by the
filter approach. Fig. 3 depicts the obtained results in terms
of relative prediction errors for (a)Rr(t), (b) rcPT

and (c)
avgRTTP . While the top 5 features selected by filter-based
selection drastically reduce prediction performance for the
three prediction targets, those features selected by wrapper-
based selection provide almost the same results as the complete
input setsFA, FB andFC respectively. This shows that many
of the input features used within each independent feature set
are irrelevant for the prediction of each of the three targets.
In particular, 6 out of 11 features for setFA, 9 out of 14
features for setFB and 39 out of 44 features for setFC have
a negligible impact on the prediction performance.

B. Feature selection using the full feature set

So far, we have tested NETPerfTrace using a split of
features into groupsFA, FB andFC . However, based on the
initial feature correlation results reported in Fig. 1, there is
strong correlation between features of groupFA andFB for the
prediction of bothRr(t) andrcPT

, which could be exploited
to improve prediction performance. We therefore explore now
the performance of NETPerfTrace when using as input the full
set of 69 input featuresFA ∪FB ∪FC , and perform wrapper-
based feature selection on top of this full set.

Model PLCC MAE (#) RMSE (#) MRE (%) TPR0rc (%) TPRrc (%)

BRR 0.96 3.89 1.97 48 34 17

LR 0.96 3.89 1.97 48 34 17

CART 0.99 0.89 0.94 16 38 60

RF (10 trees) 1.00 0.88 0.94 16 38 60

RF (100 trees) 1.00 0.87 0.94 16 38 60

MLP 0.96 4.01 2.00 51 62 91

SVR 0.96 3.47 1.86 42 74 30

Table III. BENCHMARKING OF DIFFERENT MODELS FOR PREDICTING THE NUMBER OF ROUTE CHANGES IN THE NEXT24H TIME SLOT.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

rc
PT

 (t) − real

rc
P

T
 (

t)
 −

 p
re

di
ct

ed

(a) Rr(t) prediction (normalized values). (b)rcPT
prediction (normalized values). (c)avgRTTP prediction (normalized values).

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

relative prediction errors (%)

%
 s

am
pl

es

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

relative prediction error (%)

%
 s

am
pl

es

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

relative prediction error (%)

%
 s

am
pl

es

(d) Rr(t) relative prediction errors. (e)rcPT
relative prediction errors. (f)avgRTTP relative prediction errors.

Figure 2. Real vs. predicted values for the prediction of (a)Rr(t), (b) rcPT
(t) and (c)avgRTTP (t). Relative errors for the prediction of (d)Rr(t), (e)

rcPT
(t) and (f) avgRTTP (t). NETPerfTrace uses RF10 and input features setsFA, FB andFC for predictingRr, rcPT

andavgRTTP respectively.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

relative prediction error (%)

%
 s

am
pl

es

						

F
A
 11 features

wrapper FS − top 5
filter FS − top 5

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

relative prediction error (%)

%
 s

am
pl

es

F
B
 14 features

wrapper FS − top 5
filter FS − top 5

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

relative prediction error (%)

%
 s

am
pl

es

F
C
 44 features

wrapper FS − top 5
filter FS − top 5

(a) FS for prediction ofRr(t). (b) FS for prediction ofrcPT
. (c) FS for prediction ofavgRTTP .

Figure 3. Relative errors for the prediction of (a)Rr(t), (b) rcPT
(t) and (c)RTTP (t + ε) using all the features of each independent set against the top 5

features selected by the wrapper approach and the top 5 features selected by the filter approach.

Tab. V reports the top 5 features selected by wrapper-based
selection out of the full set of features - we refer to these as
5/69 features, for the three prediction targets. We can easily
spot out that the most important features are not necessarily
the ones included in the subsetsFA, FB , andFC . A striking
example are the top five features selected for predictingRr(t):
only two out of the five features were already in the subsetFA.

The other three are related to the number of route changes,
included in FB . We can see that features inFA also help
estimatercPT

. However, as expected, features in setFC play
a significant role only for the prediction ofavgRTTP .

To verify the prediction properties of the selected features,
Fig. 4 reports the relative prediction errors for (a)Rr(t), (b)

Model PLCC MAE (ms) RMSE (ms) MRE (%) CT (s)

BRR 0.69 25.2 5 186 11

LR 0.69 25.2 5 186 9

CART 0.54 27.4 5.2 140 31

RF (10 trees) 0.63 25.1 5.1 139 28

RF (100 trees) 0.63 25 5 138 180

MLP 0.70 32.3 5.7 142 2.2 e3

SVR 0.38 39.8 6.3 53 97.2 e3

Table IV. BENCHMARKING OF DIFFERENT MODELS FOR PREDICTING

THE AVERAGE RTT OF THE NEXT TRACEROUTE MEASUREMENT.

rcPT
and (c) avgRTTP , when considering (i) the features

on each independent set (i.e,FA, FB and FC), (ii) the full
set of 69 features and (iii) the top 5/69 features reported in
Tab. V. The performance increase for the prediction ofRr(t)
w.r.t. the one achieved withFA features is astonishing, and
just by using the top 5/69 features there is a major reduction
in the relative prediction errors. Indeed, Fig. 4(a) shows that
relative prediction errors are almost zero for about 30% of the
samples with 5/69 features, and below 60% for about 80%
of the samples. The MAE obtained with 5/69 inputs is 6.2
seconds, which is more than 3 times smaller than the MAE =
21 seconds attained withFA features (cf., Tab. II). There is
also a significant improvement in the other evaluation metrics:
the PLCC goes up to 0.98, the RMSE decreases from 145 ms
to 79 ms, and the MRE goes down from 230% to 70%. Using
the full set of 69 features reduces even more the MAE and the
RMSE - by about 20%, but there are no significant changes in
the relative prediction errors, thus it is not worth considering
such a huge input set.

Regarding the estimation ofrcPT
, 4(b) shows that the

top 5/69 features do not provide any relevant improvement
w.r.t. FB features. However, in this case there is a significant
improvement when considering the full set of 69 features.
Overall, the TPRrc increases from 60% (cf., Tab. III) to
83%, and the distribution of relative prediction errors shows
an important decrease. Still, for the sake of reducing the
model complexity and the number of input features, the final
release of NETPerfTrace uses the top 5/69 features as input.
Finally, and as expected, there are no significant changes in
the prediction performance ofavgRTTP when using either
the top 5/69 or the full set of features.

As a general conclusion of the feature selection analysis,
besides using RF10 as underlying prediction model, the final
implementation of NETPerfTrace uses the top 5/69 features
reported in Tab. V as input for the prediction of the three
corresponding targets.

VI. NETPERFTRACE VERSUSDTRACK

Now that we have finally found the best configuration
of NETPerfTrace for path dynamics and performance pre-
diction, we compare its performance with the state of the
art. In particular, we compare NETPerfTrace to DTRACK
[10], [11]. DTRACK predicts only path dynamics and not
path performance, as its focus is on the prediction ofRr(t)
and rcPT

. The system uses a Nearest Neighbors (NN) based
model as underlying prediction model, and takes as input the
four features described in Tab. VI. Note that the termroute
prevalence corresponds to the proportion of time a certain
route is active. The authors of [10], [11] named their algorithm
as NN4, as it works on four aforementioned features. In a

nutshell, the NN4 algorithm of DTRACK works as follows:
first, the feature space is partitioned into polyhedrons which
number of dimensions is equal to the number of features. The
bin boundaries of the different features are chosen as equally-
spaced percentiles. In the performed evaluations we set the
number of bins for each feature to 10, as chosen by the authors
in [10], [11]. The discretization process goes as follows: for
each feature, the first bin contains the samples which value is
below the 10th percentile, the second bin the values between
the 10th and the 20th percentiles, and so on. TargetsRr(t)
and rcPT

are predicted for atraceroute samples as the
average of the real values of these metrics over the training
samples contained in the the polyhedron including the feature
vector ofs. This algorithm is basically equivalent to a decision
tree with a fixed choice of thresholds.

The comparison of NETPerfTrace vs. DTRACK is per-
formed along three distinct dimensions: features, model and
system. Firstly, we compare the input features used by both
systems, using a NNX model (X = 4 for DTRACK and X
= 5 for NETPerfTrace) and a RF10 model; secondly, we
compare the properties of the underlying prediction models,
by using NETPerfTrace input features and the two different
prediction models - NN5 and RF10; finally, we directly com-
pare NETPerfTrace and DTRACK systems, using their default
configurations (i.e., models and input features).

A. NETPerfTrace features vs. DTRACK features

Fig. 5 compares the performance of NETPerfTrace and
DTRACK using their corresponding input features and NNX
as underlying prediction model. As shown in Fig. 5(a), there
is only a slight reduction on the relative prediction errorsfor
Rr(t) when using NNX with NETPerfTrace top 5/69 input
features (NPT-NN5) as compared to DTRACK features. Still,
NPT-NN5 achieves a MAE of 20 seconds whereas DTRACK’s
MAE = 33 seconds, meaning a dramatic reduction. In addition,
NPT-NN5 shows a PLCC = 0.94 vs. a PLCC = 0.81 for
DTRACK. Fig. 5(b) shows that the performance improvement
is much more relevant when considering the prediction of
rcPT

. NPT-NN5 correctly predicts more than 25% of the non-
zero-change time slots, while DTRACK does it for only 10%.
For TPR0rc, NPT-NN5 rounds 47% of correct predications,
whereas DTRACK’s TPR0rc = 2%.

Repeating the same evaluations but using RF10 as un-
derlying prediction model shows better results for both input
feature sets. DTRACK’s MAE forRr(t) prediction decreases
from 33 seconds to 16 seconds when using RF10, whereas
NETPerfTrace attains a MAE = 6 seconds. Interestingly,
DTRACK becomes slightly better than NETPerfTrace when
it comes to predictrcPT

, but without a relevant difference.

As a first conclusion, the top 5/69 features used by NET-
PerfTrace provide in general much better results than those
used by DTRACK.

B. NN5 vs. RF10 with NETPerfTrace

We now compare the prediction power of the two under-
lying models used by NETPerfTrace and DTRACK, using
as input the top 5/69 features used by NETPerfTrace by
default. Fig. 6 shows a significant performance improvement
when using NETPerfTrace’s RF10 model as compared to

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

relative prediction error (%)

%
 s

am
pl

es

F
A
 11 features

full set − 69 features
wrapper FS − top 5/69

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

relative prediction error (%)

%
 s

am
pl

es

F
B
 14 features

full set − 69 features
wrapper FS − top 5/69

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

relative prediction error (%)

%
 s

am
pl

es

F
C
 44 features

full set − 69 features
wrapper FS − top 5/69

(a) FS for prediction ofRr(t). (b) FS for prediction ofrcPT
. (c) FS for prediction ofavgRTTP .

Figure 4. Relative errors for the prediction of (a)Rr(t), (b) rcPT
(t) and (c)RTTP (t+ ε) using all the features of each independent set against the full set

of 69 features and the top 5 features selected by the wrapper approach out of the full set (i.e., 5/69).

Top 5 features Residual life time # route changes in timeslots average RTT

#1 feature # route changes in current time slot head distribution # route changes mean(avgRTTP)

#2 feature route age of current route avg. # route changes in time slots currentavgRTTP

#3 feature max. of allD(ri) total # route changes currentmaxRTT

#4 feature route change binary flag # route changes in current time slot currentminRTT

#5 feature current # route changes in present time slot avg. ofD(ri), ∀ri ∈ P route age of current route

Table V. FEATURE SELECTION FOR THE THREE PREDICTION TARGETS WHEN CONSIDERING ALL THE 69 FEATURES.

route age of router

prevalence of router in current time slot

number of previous occurrences of router

in current time slot for pathP

total number of route changes in current time slot (rcPT
) for pathP

Table VI. FEATURE SET USED BYDTRACK

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

relative prediction error (%)

%
 s

am
pl

es

DTrack
NPT−NN5

0 10 20 30 40 50 60 70 80 90 100
relative prediction error (%)

0

10

20

30

40

50

60

70

80

90

100

%
 s

am
pl

es

DTrack
NPT-NN5

(a) NPT-NN5 vs. DTRACK forRr(t). (b) NPT-NN5 vs. DTRACK forrcPT
.

Figure 5. Performance of NETPerfTrace using NN5 vs. DTRACK.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

relative prediction error (%)

%
 s

am
pl

es

NPT−NN5
NPT−RF10

0 10 20 30 40 50 60 70 80 90 100
relative prediction error (%)

0

10

20

30

40

50

60

70

80

90

100

%
 s

am
pl

es

NPT-NN5
NPT-RF10

(a) NPT-NN5 vs. RF10 forRr(t). (b) NPT-NN5 vs. RF10 forrcPT
.

Figure 6. Performance of NETPerfTrace using NN5 and RF10 models.

DTRACK’s NN5 model. For example, Fig. 6(a) shows that
about 30% of the relative prediction errors are close to 0%
when using RF10, whereas almost no zero relative prediction
errors are observed for NN5. Fig. 6(b) shows that for nearly

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

relative prediction error (%)

%
 s

am
pl

es

DTrack
NETPerfTrace

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

relative prediction error (%)

%
 s

am
pl

es

DTrack
NETPerfTrace

(a) NPT vs. DTRACK forRr(t). (b) NPT vs DTRACK forrcPT
.

Figure 7. NETPerfTrace vs. DTRACK. NETPerfTrace largely outperforms
DTRACK for predicting path dynamics.

70% of the samples, RF10 predicts the correct number of non-
zero route changes, which drops to only 25% for NN5. The
prediction power of RF10 can be further underlined by the
achieved MAE, which is as low as 0.92 vs. 3.55 for NN5.

As a second conclusion, the prediction model used by
NETPerfTrace clearly outperforms the one used by DTRACK.

C. NETPerfTrace vs. DTRACK

To conclude the comparison, we now focus on the per-
formance of both NETPerfTrace and DTRACK systems using
their default configurations in terms of model and input fea-
tures. Fig. 7 clearly shows that NETPerfTrace largely outper-
forms DTRACK for predicting path dynamics. According to
Fig. 7(a), NETPerfTrace can predictRr(t) with relative errors
below 10% for about 50% of the samples, whereas DTRACK
only does so for 10% of the samples. In addition, almost 30%
of the predictions with NETPerfTrace yield a relative error
close to zero, whereas almost no zero relative prediction errors
are observed for DTRACK. The PLCC of NETPerfTrace has a
value of 0.97 while the one attained by DTRACK is only 0.81.
Finally, NETPerfTrace’s MAE is almost 80% smaller than the
one obtained by DTRACK.

In terms of daily route changes, Fig. 7(b) shows that
NETPerfTrace correctly predicts almost 70% of the non-zero
route changes, whereas DTRACK falls to correctly predict
only 10% of the changes. Overall, NETPerfTrace predicts the
correct number of route changes TPRrc for about 65% of the
samples whereas DTRACK correctly does it for only 8% of
the samples. Finally, the MAE is below 1 for NETPerfTrace
and above 5 for DTRACK.

As a general conclusion, presented results evidence that
NETPerfTrace largely outperforms DTRACK when forecast-
ing bothRr(t) andrcPT

, by using only one additional feature
to tackle both prediction problems. On the one hand, this
is explained by the better prediction power of the selected
features. Note that we have selected specific feature sets for the
prediction ofRr(t) andrcPT

respectively, whereas DTRACK
uses the same set of features for predicting both targets. On
the other hand, NETPerfTrace relies on a much more powerful
prediction model than DTRACK, which greatly contributes to
the overall high accuracy of the system.

VII. C ONCLUDING REMARKS

In this paper, we have addressed the problem of pre-
dicting Internet path changes and path performance using
traceroute measurements and machine learning models.
We have introduced and evaluated NETPerfTrace, an Internet
Path Tracking system capable of forecasting (i) the remaining
life time of a path before it actually changes, (ii) the dailynum-
ber of path changes in the next day and (iii) the average RTT
of the nexttraceroute measurement with relatively high
accuracy. By carefully engineering NETPerfTrace underlying
model and input features, we have shown that NETPerfTrace
highly outperforms DTRACK, a previous system with the same
prediction targets. In particular, NETPerfTrace outperforms
DTRACK by a factor of 5 when forecasting the residual
lifetime of a path with relative prediction errors below 10%,
and by a factor of 7 in correctly predicting daily path changes.
As an additional contribution, we have released NETPerfTrace
as open software to the networking community.

REFERENCES

[1] V. Paxson, “End-to-end routing behavior in the internet,” in
Conference Proceedings on Applications, Technologies, Architectures,
and Protocols for Computer Communications, ser. SIGCOMM ’96.
New York, NY, USA: ACM, 1996, pp. 25–38. [Online]. Available:
http://doi.acm.org/10.1145/248156.248160

[2] U. Javed, I. Cunha, D. Choffnes, E. Katz-Bassett, T. Anderson, and
A. Krishnamurthy, “Poiroot: Investigating the root cause of interdomain
path changes,” inProc. of the ACM SIGCOMM 2013, August 2013, pp.
183–194.

[3] Y. Zhu, B. Helsley, J. Rexford, A. Siganporia, and S. Srinivasan,
“Latlong: Diagnosing wide-area latency changes for CDNs,”IEEE
Transactions on Network and Service Management, vol. 9, no. 3, pp.
333–345, September 2012.

[4] G. Linden, “Make Data Useful,” 2006, http://sites.google.com/site/
glinden/Home/StanfordDataMining.2006-11-28.ppt.

[5] K. Eaton, “How One Second Could Cost Amazon $1.6
Billion in Sales,” 2012, https://www.fastcompany.com/1825005/
how-one-second-could-cost-amazon-16-billion-sales.

[6] S. Wassermann, P. Casas, B. Donnet, G. Leduc, and M. Mellia,
“On the Analysis of Internet Paths with DisNETPerf, a Distributed
Paths Performance Analyzer,”Proc. 10th IEEE Workshop on Network
Measurements (WNM), November 2016.

[7] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Kr-
ishnamurthy, and A. Venkataramani, “iPlane: An information plane
for distributed services,” inProc. USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2006.

[8] E. Katz-Bassett, H. Madhyastha, V. Adhikari, C. Scott, J. Sherry, P. van
Wesep, A. Krishnamurthy, and T. Anderson, “Reverse traceroute,” in
Proc. USENIX Symposium on Networked Systems Design and Imple-
mentations (NSDI), 2010.

[9] I. Cunha, P. Marchetta, M. Calder, Y.-C. Chiu, B. V. A. Machado,
A. Pescapè, V. Giotsas, H. V. Madhyastha, and E. Katz-Bassett, “Sibyl:
A practical internet route oracle,” inProc. USENIX Symposium on
Networked Systems Design and Implementations (NSDI), 2016, pp.
325–344.

[10] I. Cunha, R. Teixeira, D. Veitch, and C. Diot, “Predicting and tracking
internet path changes,” inProceedings of the ACM SIGCOMM 2011
Conference, August 2011, pp. 122–133.

[11] ——, “DTRACK: A system to predict and track internet pathchanges,”
IEEE/ACM Transations on Networking, vol. 22, no. 4, pp. 1025–1038,
August 2014.

[12] Í. Cunha, R. Teixeira, and C. Diot,Measuring and Characterizing
End-to-End Route Dynamics in the Presence of Load Balancing.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp.235–244.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-19260-924

[13] W. Hu, Z. Wang, and L. Sun, “Guyot: a Hybrid Learning- and
Model-based RTT Predictive Approach,” in2015 IEEE International
Conference on Communications (ICC), June 2015, pp. 5884–5889.

[14] B. A. Arouche Nunes, K. Veenstra, W. Ballenthin, S. Lukin, and
K. Obraczka, “A Machine Learning Framework for TCP Round-Trip
Time Estimation,” EURASIP Journal on Wireless Communications
and Networking, vol. 2014, no. 1, p. 47, 2014. [Online]. Available:
http://dx.doi.org/10.1186/1687-1499-2014-47

[15] S. Wassermann, P. Casas, and B. Donnet, “Machine Learning based Pre-
diction of Internet Path Dynamics,”CoNEXT 2016 Student Workshop,
2016.

