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= AIT — Austrian Institute of Technology (~1300 FTEs in multiple applied research
domains)

= DSS — Center for Digital Safety & Security (~300 FTEs)

= Digital Insight Lab (~25 FTEs), working on Data Science as core Research Field
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AI4ANETS, Big Data Analytics, and Network Monitoring

Ever-increasing performance = QOur reliance on the Internet makes us victims of its
requirements success, and vulnerable to its shortcomings
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The complexity of the Internet requires advanced monitoring and analysis approaches to

match the expectations in terms of security, robustness, performance, and adaptability




AI4ANETS, Big Data Analytics, and Network Monitoring

THE INTERNET MAFPING PROJECT
A ensls 2 f; “The Internet is the first thing that humanity
W has built that humanity doesn't understand,
| é the largest experiment in anarchy that we have
é ever had.”

Eric Schmidt, former Google CEO

Hot Topic in the agenda of top Internet players

Goals of AIANETS

A radical change in the way we manage communication networks, relying on Al & Big-Data
Analytics

The vision — turn the Internet “transparent” and “liquid”

More secure & robust, better performance, greener, and self-adaptive to end-user needs in
real-time



Two decades of AIANETS

= Cognitive Networking (1998): networks with cognitive capabilities which could learn from past
observations and behaviors, to better adapt to end-to-end requirements.

= Term re-furbished along time, referring to it as self-organizing networks, self-aware networks,
self-driving networks, intelligent networks, etc.

"= However, there is a striking gap between the extensive academic research and the actual
deployments of such Al-based systems in operational environments.

= Why? my take: there are still many unsolved 2020 2025
complex .challenges associated to the analysis of T —
Networking data through Al/ML. Human oven Event v Mchine-Orven )-
o e . () @ S G,
= Hot Topic in the agenda of main Internet players: B .L_’! !_I_’!
= Network Operators B e A Rt N ey
= Network Vendors (self-driving networks) ek e | e stene

management (Orchestration, etc.) network change network change

= Content Providers: the Internet business of o o R
end-user engagement




AI4ANETS — Application Domains in Networking

= AI4NETS represents the meeting point between applied Al/ML, Big Data, and
Networking

P Network Security Anomaly Detection & Diagnosis
—————— - (AIANETSEC) (AIANETADD)
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Networkin
2 Network Monitoring & Analysis :x:;\'n:_:&:
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AI4ANETS — Application to Other Domains

= AIANETS represents a complex context for Al/ML, opening the door to other fields

= The challenge is huge:

AIANETS involves all of the major learning and big data challenges (the 4 Vs)

Massive volumes of complex and heterogeneous data (Volume and Variety)

Fast and highly dynamic streams of data (Velocity)

Lack of ground truth for learning (Veracity)
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Machine Learning for Network Analytics
Use Cases — What do | do @AIT?

* Network Traffic Monitoring & Analysis
* End-User Experience (Internet-QokE)

= Cybersecurity & Anomaly Detection

= Network Performance Forecasting
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data is biased: partial or
misrepresentation of real system

[The Achilles heel of ML/AI: BIAS]
Complex

models are biased: assumptions or
hypotheses of behavior,
mathematical properties, lack of
transparency

= The Al/ML model user is biased, or unaware of the limitations of Al/ML: model
evaluation/testing, model certification, correlation vs causality



What is Blocking
Al/ML Success in Networking?
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What is Blocking Al Success in Networking?

= Data Complexity: the complexity (and heterogeneity) of the data related to Internet-like
networks is one of the most significant bottlenecks to AI4NETS

= The Internet, and in general large-scale networks, are a complex tangle of networks,
technologies, applications, services, devices and end-users

= Al has so far shown very successful results generally in data from more predictable and
easy to understand sources (natural sources)



What is Blocking Al Success in Networking?

= Diversity of Network Data: besides complexity, network data often exhibits much
more diversity than one would intuitively expect

Global Transit / "Hyper Giants"
Global Internet National Large Content, Consumer, Hosting CDN
Core Backbones ,
learn EEM t w

Regional / Tier2 ‘

Providers 4 @ .

learn here apply here
w | OO0QQOQUC
Networks Ny | /

learn here apply here apply here



What is Blocking Al Success in Networking?

= Data Dynamics: networking data is non-stationary, generally comes in the form of
data streams, and is full of constant concept drifts
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What is Blocking Al Success in Networking?
= Lack of Ground Truth: in the wild networking data is usually non-labeled

= Lack of Standardized and Representative Datasets: datasets are generally biased,

= There is no IMAGENET or the like in Networking

= Network data labeling, and even data interpretation, is too complex for humans,
even for domain experts (e.g., malware vs benign traffic instead of cat vs dog)

= Easier for naturally generated data: images, text, audio



What is Blocking Al Success in Networking?

= Lack of Interpretability: this is a general problem of ML models (e.g., DL provides
beautiful black-boxes)...but the issue is even more complex in AI4NETS

= To improve trust, the end-user (humans) has to trust model predictions, for
example, by understanding which inputs lead to a specific output, but generally
difficult to interpret networking features

@ S O\

Training Learning Explainable
Data Process Model

= The lack of interpretability and trust stops Al deployments:
= Network security — AI4ANETSEC
= Dynamic Traffic Engineering — AI4ANETTE
= Dynamic network instantiation (NFV) and (re)-configuration (SDN) — AI4SELFNET



What is Blocking Al Success in Networking?

= Learning occurs in an Adversarial Setting: services obfuscate and modify their
functioning to bypass monitoring and avoid traffic engineering policies

Malware Obfusca+ion

WHAT YOU SEE 15

WHATNEJ-I GET faﬂsfbf
(3ppears 3s data)
v %f . 7 Push EBP \<Unpa,ck Code>
7 MOV EBP, ESP Encrypt/ =S ee00R
i SUB ESP, 8 Compress/ i o
. CALL 00401170 Transform ﬁg AN s
Program A Program A’

= |t becomes even more trickier to learn, when the adversary constantly tries to
fool the learner

= Not only malign actors, but standard services: Skype, QUIC, etc.



What is Blocking Al Success in Networking?

= Lack of Learning Generalization: as a consequence of previous issues, it becomes
extremely difficult in the networking practice to learn models which can
generalize to operational environments

The Self-Driving Network

Event-driven Machine-Driven

Human-Driven )
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Organization of the Talk

Dealing with Some of these Challenges
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= Deep Learning for Malware Detection — Avoid Feature Engineering

= Explainable Artificial Intelligence (XAl) — Interpret Model Decisions

= Super Learning for Network Security — Avoid Model Decision

= Adaptive/Stream Learning for NetSec — Deal with Concept Drifts



Let’s take a step back and set a common ground ©




A little bit of history...
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[ [ ] Modern Machine Learning - intensively data driven

@ Minsky (TA'69), McCarthy (TA'71) & Solomonoff — AlI/ML ~ Hinton,
LeCun & Bengio (TA’18) — Deep Learning

1956 McCarthy (Stanford): "Artificial Intelligence is the science and
engineering of making intelligent machines, which can perceive their
environment and take actions to maximize their chances of success".

Pedro CASAS AlANETS Can a Network Learn?



A little bit of history...

Artificial
Intelligence

" DT | Different disciplines \
Cognitive ‘| converge in Machine Learning |
Science )

s f
]

| .
1 learning .
. -

Statistics

\ ] Neural Networks

I

; ][] Reinforcement learning
i

Machine

Psycologicalal

Learning \ Models Evolutionary | [ Genetic algorithms
N i
Y. N Models |
. | Pattern !
~ \ - d
. \ Recognition d
~ o N v f
S - - : - : -\ ff
_____ N ’ y
~ __'/ -~

- =

B[] Modern Machine Learning - intensively data driven

1956 Dartmouth Summer Research Workshop on Al - founding event of Al as a field.
1956 Ray Solomonoff first mentioning the term "Learning Machines"...

1980 ...but the first International Workshop on Machine Learning (currently ICML)
appears almost 25 years later.

Pedro CASAS AlANETS Can a Network Learn?



A little bit of history...
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B[] Modern Machine Learning - intensively data driven

Is about computational approaches to learning: ML

aims to understand by which
, traducing these into computer algorithms.

Pedro CASAS AlANETS Can a Network Learn?



ML: discipline vs tool to solve complex problems

about trying different algorithms to obtain better results.

To build a solid house on your own, you need to know about architecture, as
well as about the intrinsic characteristics of the construction toolbox. ..

Two commonly arising problems when coupling ML and Networking:

(I) You have to understand the problem:

@ Even a ML expert fails to achieve a good networking solution if he
neither knows the good descriptors nor understands the problem (e.g.,

try to classify flows using only port numbers).

@ Keep the scope narrow, to better understand the overall process (i.e.,
from selecting features to evaluation and conclusions).

@ The solution must be meaningful in practical terms (e.g., predicting QoE
from descriptors that can’t be controlled is pretty useless for QoE
management).

Pedro CASAS
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ML.: discipline vs tool to solve complex problems

ML in TMA about trying different algorithms to obtain better results.

To build a solid house on your own, you need to know about architecture, as
well as about the intrinsic characteristics of the construction toolbox. ..

Two commonly arising problems when coupling ML and Networking:

(I) You have to understand the tool:

@ The broader overview you have about the particularities of each ML
approach, the better chances to apply the correct one (e.g., avoid killing
mosquitos with a hammer).

@ The research community does not benefit any further from yet another
untried ML approach (e.g., IDS based on KDD'99 dataset).

@ A good grasp of calculus, linear algebra, and probability is essential for a
clear understanding of ML and PR in TMA and Networking.

o

Pedro CASAS AlANETS Can a Network Learn?
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= Deep Learning for Malware Detection — Avoid Feature Engineering

= Explainable Artificial Intelligence (XAl) — Interpret Model Decisions

= Super Learning for Network Security — Avoid Model Decision

= Adaptive/Stream Learning for NetSec — Deal with Concept Drifts



Artificial Intelligence — As Smart as a Donut!

* Machine Learning is still very stupid — the big revolution is on
big data processing and data availability/accessibility

Current ML benefits are fundamentally due to machines ability to blindly:
= compute lots of math operations per second
= handle large amounts of data
= deal with data in high-dimensional spaces

A lot of data required to “learn” simple logical inter-relations

Shallow Learning: less data but human expert knowledge required, to
properly guide the feature engineering process

= Deep Learning: automated feature engineering (representation learning)
but needs much more data

RawPower
we explore deep learning for blind malware detection in network traffic




Shallow Learning vs Deep Learning
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Basic Concepts of RawPower

= The input to the Deep Learning model is RAW — only byte-streams

= No need to define tailored, domain-knowledge-based input features

4 )

[Network Traffic] ﬂ]D 10100 [
Capturing D D D D D @
T L

l F
# ﬁ [;IID nc RawPower

8] (5] \_ )

9 malware
(N

= Different architectures to analyze both packet-based and flow-based byte

aggregations

= Models for binary malware detection — fully supervised-based training



Raw Input Representations

= |Input representation of the data, as well as network architecture, are both
key elements to consider when building a DL model

= We take two types of raw input representations: packets and flows. Decimal
normalized representation of every byte of every packet is a different input

= Flow representation: matrix-like input, first m packets x first n bytes

bl,m‘ bQ;m‘ bB,m ‘ b4,m | c e ‘ bn,m
bl,mfl‘ b I

| 0y | by |

2,m-2 3.m-3

&
4 >
ey
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ape of the
-and n the

number (b) Flow representation for the input data. A tensor of size
(N, m,n) where N represents the number of instances —flows—,
m the number of channels —packets— and n the number of steps

—bytes—.



Deep Learning — Architectural Principles

= The core layers used for both models are basically two: convolutional and
recurrent

= Convolutional, to build the feature representation of the spatial data inside
the packets and flows

= Recurrent layers are used together with the convolutional ones to allow the
model keeping track of temporal information

= Fully-connected layers to deal with the different feature combinations

= Batch Normalization: layer inputs are normalized for each mini-batch. As a
result: higher learning rates can be used, model less sensitive to initialization
and also adds regularization

" Dropout: randomly drop units (along with their connections) from the neural
network during training. A very efficient way to perform model averaging



DL Architectures — Packets

= Raw Packets Architecture:
= nissetto first 1024 bytes
= two 1D-CNN layers of 32 and 64 filters (size 5) respectively
= MP - max pooling layer (size 8)
= LSTM layer with 200 neurons
= two fully-connected layers of 200 neurons each
= binary cross-entropy as loss function

= spatial and normal batch normalization layers after each 1D-CNN and FC layers to ease

training
= dropout layers to add regularization to the model

Activation maps
LSTM

Bvte vectorized
packet of size 1024

[
e ) — iy’ — (e — . -

LSTM: 200
units — return

Activation maps C1 Activation maps C2 Activation maps MP

C1: 1D-CNN layer
32 filters, size 5

C2: 1D-CNN laver
64 filters, size 5

MP: Max-Pooling

1x8§
full sequence

FC1: FC2:

Flatten

200 units 200 units

A

[
)
{
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DL Architectures — Flows

= Raw Flows Architecture: we go for a simpler model, with less features

n is set to first 100 bytes, and m to first 2 packets

one 1D-CNN layers of 32 filter (size 5)

two fully-connected layers of 50 and 100 neurons each
binary cross-entropy as loss function

spatial and normal batch normalization layers

dropout layers to add regularization to the model

FCI: FC2:

Flatten 50 units 100 units

Byte vectorized flow
of size 100X 1X2

i — = —

C1: 1D-CNN layer

32 filters. size 5

Activation maps C1




Evaluations

m ¥ Tensor E‘%

= All evaluations run on top of Big-DAMA cluster (distributed CPU)

= Keras framework running on top of TensorFlow

= Dataset: malware and normal traffic captures (pcap) performed by the
Stratosphere IPS Project of the CTU University of Prague

= 250.000 raw packet instances, 70.000 raw flow instances
= 80% of the samples for training, 10% for validation and 10% for testing

= Compare performance to highly expressive Random Forest:
" same raw inputs
100 trees x
max depth and instances per leaf set for high expression e

[ T NN
selected based on great outperformance in state of the art m g{m m
¢1

Y



True Positive Rate (%)

RawPower — Packet Representation

= Malware consists of 10 different malware types, collected at controlled
environment

100 A

80 A

60 -

40 A

20 A

- Raw Packets (AUC = 0.84)

RF (AUC = 0.74)

0 20

40 60 80 100
False Positive Rate (%)

ROC curves for both RawPower and RF

Both models using the same raw
packet inputs

Performance is not good at the
packet-level

Little gain w.r.t. a simple RF model



RawPower — Flow Representation vs Shallow ML

= Training and validation evolution over 10 epochs

* Much better performance at the flow level

RawPower can detect almost 98% of the malware flows with a FPR < 0.5%

= Shallow models not able to capture the underlying relations
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RawPower — Flow Representation vs Expert Features

Comparison against traditional RF-based model, which uses highly
engineered input features, extracted from domain knowledge

, 10—
Both models provide comparable wl(F---"""TTTTTTTTT _
results 80 |
701
e 60f
The key advantage of RawPower " 55|
is to rely directly on the usage of £ 4
bytestream raw data as input 30
20 — RawPower
10 = =RF + Domain Expert Features|
Input representation learning: no o—"""""
P P _ g 0O 1 2 3 4 5 6 7 8 9 10
the need for feature engineering FPR (%)

RawPower vs. knowledge-based inputs.
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= Deep Learning for Malware Detection — Avoid Feature Engineering

= Explainable Artificial Intelligence (XAl) — Interpret Model Decisions

= Super Learning for Network Security — Avoid Model Decision

= Adaptive/Stream Learning for NetSec — Deal with Concept Drifts



EXplainable Al (XAl) — Why Should | Trust You? "O@%’f@ ]
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= ML models 2 mostly are black boxes (exceptions: linear models,
decision trees, etc.) — e.g.: some popular ML models have 10s of
millions of parameters!

* Models are evaluated off-line before deployment on available test
datasets — data @runtime might change (concept drift)

* Humans want to understand model’s behavior to gain trust
(applicability in the practice)
= trusting an individual model’s prediction
= trusting a model (inspect a set of representative individual predictions)

= Explainable Al: approaches capable to explain models and individual
predictions, by tracking back to the inputs leading to a certain output



Why XAI?

= |deally, ML models should be self-explanatory: improve end-user understanding
and trust, by offering simple explanations of the “whys” of certain decision

= Only few models are self-explanatory:

} ot
15¢
| e .
104 - 5L T
2 “.,—’f.-.' %
B Sk
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Linear Regression
Decision Tree

Logistic Regressior /‘\/‘\ Q‘

self-explanatory

Random Forest

Deep Net

v

model complexity



A Simple XAl Example

= Application Example: Al-supported disease diagnosis

&

Model

= Explainer: LIME - Local Interpretable Model-agnostic Explanations

" LIME approach: builds an interpretable model that is locally faithful
to the classifier under analysis

= Other approaches: SHAP, LRP (NNs), PDP, etc.



Desired Properties of an Explainer p—
=/
Interpretable - qualitative understanding between input features and
response

= user’s limitation taken into account, e.g. no hundreds of features presented to
the user

= Locally faithful - must correspond to original model behavior in the
vicinity of the explained prediction

= globally faithful and interpretable explanations are hard to achieve for
complex models

=  Model-agnostic = flexibility; can be used with any model

= treat the original model as a black box, no reference to any specific property
of the original model in the explanation

= @Global perspective > trust in the model; present (few) representative
explanations to the user

= build upon explanations for individual predictions; helpful for model selection



LIME in a Nutshell — Sampling for Local Exploration

Let f be an unknown complex decision function (blue/ background)

local model g complex model f

-

+
I

©
++ @
+ @
I
I
I

® +
..

/

g is interpretable, locally faithful
to f (captured by D,), and model
agnostic (uses f(z) as labels)

robust to sampling noise, thanks
toD,

The bold red-cross (x) is the instance
we want to explain

LIME samples instances z around x,
weighted by some similarity measure
D, > D,(z) is higher for instances
closer to x

Using model f, gets the
corresponding predictions f(z)

Finally, it uses z and f(z) to build an
interpretable model g (e.g, linear)
around x



LIME Examples (1) — Model Comparison/Selection
= Task: word-based email classification, Christianity or Atheism

= 2 models (Algorithm 1 vs Algorithm 2), which one is better?

Algorithm 1 Algorithm 2
Words that Al considers important: Predicted: Words that A2 considers important: Predicted:
GOD . Atheism Posting ‘ Atheism
mean Prediction correct: Host Prediction correct:
anyone J Re J
this by
Koresh in
through Nntp
Document Document
From: pauld@verdix.com (Paul Durbin) From: pauld@verdix.com (Paul Durbin)
Subject: Re: DAVID CORESH IS! GOD! Subject: Re: DAVID CORESH IS! GOD!
Nntp-Posting-Host: sarge hg.verdix.com Nntp-Posting-Host: sarge.hq.verdix.com
Organization: Verdix Corp Organization: Verdix Corp
Lines: 8 Lines: 8

= Algorithm 2 is better than Algorithm 1 in terms of accuracy in validation...
= ..but Algorithm 2 makes predictions for arbitrary reasons...Algorithm 1 is better

= Performance metrics should be carefully considered



LIME Examples (IlI) - Model Performance Evaluation

= Task: image classification, using Google’s pre-trained Inception CNN
architecture

(a) Original Image

= Figs. (b,c,d) report super-pixel explanations provided by LIME

" Top 3 classes: Electric Guitar (p = 0.32), Acoustic Guitar (p = 0.24), and
Labrador (p = 0.21)

= The image is wrongly classified, but explanations provide trust in the
model, as they are reasonable



LIME Examples (lll) — Discover Biased Data

= Task: train a classifier to distinguish between Wolves and Huskies
= Biased data (e.g., undesirable strong correlations) = wrong classifier

= Hard to identify by looking at the raw data and predictions

= Bias@training: all pictures of
Wolves had snow in background

= The classifier performs well
according to cross-validation in
this biased dataset...

(a) Husky classified as wolf (b) Explanation

= _.but explanations of individual predictions show that the model learnt a
biased pattern: if snow = wolf, else > Husky



EXPLAIN-IT: Steps to XAl for Unsupervised Learning

= Task: unsupervised learning through Clustering

= Challenge: automatically interpret clustering results, beyond traditional structural
clustering validation approaches (e.g., silhouette, completeness, homogeneity, etc.)

1.0 — 1.0 1.0
0.8 0.8 0.8
. 0.6 . 0.6 . 0.6
a V4 (=] a
0.4 . 0.4 0.4
//
0.2 / 0.2 0.2
0.0 : : L : 0.0 1 : H 0.0 - : : ! i
0.0 0.5 1.0 L.5 2.0 2.5 0.0 0.5 1.0 L.5 2.0 0.0 0.5 1.0 1.5 2.0 2.5
Mean throughput downlink (first 10 s) [Mb] Mean throughput downlink (first 10 s) [Mb] Mean throughput downlink (first 10 s) [Mb]
ka) YouTube sessions in Cluster 0 (b) YouTube sessions in Cluster 1 (c) YouTube sessions in Cluster 2

Figure 3: Average downlink throughput (ADT) distribution on the first 10s slot, per cluster. While there is strong
variance within each cluster, ADT distributions are ordered, with ADT(C;) < ADT(C,) < ADT(C,).

Figure 1: The EXPLAIN-IT system. Data is firstly embedded into the exploration space, relying on expert knowl-
edge when available. The summary space is the result obtained by clustering the exploration space. Next, a super-
vised, data splitting model is built out of the clustering results. Finally, an XAI approach (LIME) is applied to this
splitting model, interpreting the contents of the clusters by adding local interpretations.
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Ensemble Learning for Network Security

= Which is the best model or category of models for a specific learning
task?

= Deep Learning? Not obvious in the context of Network traffic
Monitoring and Analysis (NMA)

= Qur claim: “multiple-eyes principle” = ensemble learning models

= We explore the application of ensemble learning models to multiple
NMA problems...

= _.following a particularly promising model known as the Super
Learner



Ensemble Learning for Network Security

ensemble learning:
combine multiple (base)
learning models to obtain
better performance.

= |f a set of base learners do not capture the true prediction function (the oracle),
ensembles can give a good approximation to that oracle function.

= Ensembles perform better than the individual base algorithms.

= Multiple approaches to ensemble learning, including bagging (decrease variance),
boosting (decrease bias), and stacking (improve predictive performance)



Super Learner

Knowledge

0

oooo
0

0O 0o ©

0 (0]

Experience

C‘QTO

Ovorﬂt.tipg

3. Predict the outcomes in the

validation block based on the

corresponding training block
candidate learner

z

each candidate leamner (step 0)

eeeeeeeeeeee

= General ensemble learning approaches might be prone to over-fitting.

= Super Learner [Van der Laan’07]: stacking ensemble learning meta-model that
minimizes over-fitting likelihood using a variant of cross-validation.

= Finds the optimal combination of a collection of prediction algorithms -
performs asymptotically as well — or better, than any of the base learners.



Super Learner — How Does it Work?

1. Split data 2. Train each 3. Predict the outcomes in the
into V blocks candidate learner validation block based on the
%7 corresponding training block
5 (3) candidate learner
3. Predict the outcomes in the

validation block based on the
corresponding training block
candidate learner

(2) 4. Model selection and
fitting for the regression

(4)

Y

[ m Josa] TR }—

4. Model selection and
fitting for the regression
of the observed
outcome onto the

(l) > 1 1 ! ! predicted outcomes
Data [~ 2 | 2 2 2 from the candidate |71 {4 {— ! prediced ovioomes
. - - . learners E learners
—»{ m |osma] | RF : : : '

By =y —~ E(Y|Z) =m(z5)
[ E(Y|Z)=m(z; )

(5)

outcome onio the

g
2
>
=
b
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v a4 v v v

5. Evaluate super learner
by combining predictions from

1 each candidate learner (step 0)
with m(z;B) (steps 1-4)
2
- Y
> > m Jomm] . | AF — 5. Evaluate super learner R
- by combining predictions from
% each candidate learner (step 0)
0. Train each
candidate learner on
entire dataset Y

| Im |DJ’S!A| . | RF H #| Super Leamner /

= 2-steps approach (training and validation of Super Learner):
2% B Higimeoth) ot et baks)enendtets g kiqinandadisetion sy it bise
fledneryeqymmite predictions (et iom ofl o & idDtiews diltasex Bk jiv),
magr[bylerdsitvalihetionite® (B) train the Super Learner model m(z,8)

\_




GML Learning for NMA E‘%
ALUA

= The Super Learner meta-model could be whatever algorithm

= The original work [Van der Laan’07] uses a simple minimum square linear
regression model as the example Super Learner.

= Problem: how to define weights to perform properly in every dataset?

" GMIL Learning: computes weights with an exponential probability of
success, reducing the influence of poor base learning models.

J
base learners
o) = Luly

J=1

e base learner accuracy
J .
Zi:1 e(é‘}‘\‘ control variable: reduces weight

for low accuracy predictors

'wj —



Models Benchmarking E‘%

We compare several models for NMA:

= We take 5 standard base learning models: linear SVM, CART, k-NN, ANN
(MLP) and Naive Bayes

We build 4 different Super Learners:
1. Logistic regression (binary output 0/1)
2. Weighted Majority Voting (MV):
= MVuniform: same weight to each base learner
= MVaccuracy: weights are computed using base learner accuracy
3. Decision Tree meta-learner (CART)

= Boosting (ensemble learning): AdaBoost tree
= Bagging (ensemble learning): Bagging tree and Random Forest

= GML Learning



Multiple NMA Problems E‘%
ALUA

Five network measurement problems for model benchmarking:

1. NS - detection of network attacks in WIDE/MAWI traffic (transpacific links)

2. AD -detection of smartphone-apps anomalies in cellular networks (data
captured at core cellular network)

3. QOE-P - QoE prediction in cellular networks (data captured at smartphones)
4. QoE-M - QoE-modeling for video streaming (smartphones public datasets)

5. PPC-Internet-paths dynamics tracking — prediction of path changes (M-Lab
traceroute measurements)



(some) Evaluation Datasets E‘%

=  We focus on two NMA problems:
= Detection of Network Attacks in WIDE/MAWI network traffic
= Detection of App-related Anomalies in an Operational Cellular Network

| Field | | Feature | Description |

" SyiDbatinallyeneffitasshat AdenfoiAde i cellular networks— - b
pkt_h H(PKT)
" deffived fcomopalueliudar iSBreakiaradints iy affic-measurements w_
- MASHIIIHLIENGERBMBINARIROS four tradit]  [—m= =T
" Abemaly deoplatiesadicibgdy| Type 2| Es w"'};jg
@"‘?t&?&‘%'@égéﬁ'f)l?og? AT o Ee— 9:00 13:00 18:00
: FyalyatipadabsHed daazeici Duration d 2h 1 day 1h
W;@@QF@?&W“&@ﬁE@Q&%% Involved devices D 10% 5% 3%
sit (nu ber of involve Back-off time 5 sec 180 sec 20 sec
ﬂffzatglrjresnaegﬁgbn I.'O'\](;[:?T]: Manufacturer single popular | multiple multiple
- %Rese INC Udde tﬁ"lroug put, pat OS single single multiple
: EB@?@%@%F&W?t%N%ﬁﬂ Error flag +5% timeout — —
(RATBIFRCIVERR FBNRBIE | istp FQDN op2LD | top-2LD | top-2LD
and more Table III

ANOMALOUS DNS TRAFFIC FEATURES FOR TYPES Fy., Fy, Fs.



Benchmark for Network Security

TPR (%)

100 1001 = ——————— 100
=i i
_._?r-—' iJ’--'___ _______
4 | ] Fd I
80 80 1 s 80
.'f /;
Ill ’r;
60 E‘g‘ 60 1 I,.' /’f _ae 60 i~
! .'I ’f st X
- e B AN v E ol
7: SVM === logreg = ’l' SWM === |ogreg = f { SVM === |ogreg
v === [ecsion Tree === MV uniforme ! === [Decsion Tree —= MV uniforme ! ‘-' === Decision Tree —= MV uniforme
—_— kNN [l e MV accuracy B // —— kNN eeeses MV accuracy il = kNN e MV accuracy
g e Meural Net — GML 200 7 e Neural Net — GML 20407 e Neural Net — GML
- MNaive Bayes ——— .'f // MNaive Bayes === CART !‘r' Naive Bayes === CART
Random Forest ! 7 Random Forest 4 Random Forest
0 . ; | 0 ! | |
5 10 20 5 10 15 20 0 5 10 15 20
FPR (%) FPR (%) FPR (%)
Base Lear Super Learner,
na%£§ p g HTTP Flashcrowd (MPTP-la). ic) Ping Flood.
100+ = 100
nE P
801 “‘I ol ’_..-" 80 4
5
— 4 i i - -
E 60 i % E 60
o .4 A e
o . o T B
= 40 F! SWM === |ogreg = 40 rlr' : SWM === logreg
1 === Decision Tree == MWuniforme ] - === Decision Tres === MWuniforme
i —-— kNN --== MVaccuracy L] — = kNN e MVaccuracy
201 T 777 e Meural Net —_— G 20y Meural Net —_— GML
I Maive Bayes === (CART é MNaive Bayes === (CART
';.«' Random Forest F Random Forest
D T T T 0 L T T T
0 5 10 15 20 0 5 10 15 20
FPR (%) FPR (%)
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Benchmark for Network Security

TPR (%)

100

80 1
60
40 -

20 1

-
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-
-
-
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I:ﬁ SVM -— logreg

14 === Decision Tree == MVuniforme

== kNN e MVaccuracy
/: E ok Neural Net — GNL
- ;/' Naive Bayes CART
ok Random Forest
# u

o) 10 15 20
FPR (%)
(a) DDoS.

Super Learners (SLs)
outperform both base
learners, as well as the RF
model

The CART SL performs the
worst = regression-based
models are more accurate for

SL

GML slightly outperforms
other SLs



Benchmark for Network Security

DDoS
CART 0.745
Naive Bayes 0.730
MLP 0.907
SVM 0.883
kNN 0.720

Random Forest 0.827
Bagging Tree 0.823
AdaBoost Tree 0.892

logreg 0.926
MVaccuracy 0.924
MVuniform 0.923
CART 0.867
GML 0.935

= We take the Area Under the ROC Curve (AUC) as benchmarking metric
= SLs performance increase is higher when base learners perform worse
= Even if slightly, the GML model systematically outperforms other models



Benchmark for Anomaly Detection

El E2 E3
CART 0.993 - 0.873 0978 = Similar observations are
Naive Bayes 0.956  0.861 0.959 drawn from the AD
MLP 0.997 0944  0.996 benchmark
SVM 0.996 0944  0.995
kNN 0.995  0.859  0.963 i

= Anomalies E1 and E3 are

Random Forest  0.999  0.876  0.993 easier to detect, and base
Bagging Tree 0.996 0885  0.983 learners provide already very
AdaBoost Tree 0998  0.945  0.995 accurate results
logreg 0.999 0952 0.996
M Vaccuracy 0.999  0.948  0.996 = E2 anomalies are stealthier
M Vuniform 0.999 0945 0.996 (long duration, small
CART 0.997  0.924 0.994 volume), and GML provides a
GML 0999 0963  0.997 clear performance increase




Full Benchmark in multiple NMA Problems

AD

NS

QoE-P

QoE-M

PPC

ALL

CART

Naive Bayes
MLP

SVM

kNN

0.948 (3.9% )
0.925 (6.2% )
0.979 (0.7 % )
0.978 (0.8% )
0.939 (4.8% )

0.872 (11.1%)
0.826 (15.8%)
0.970 (1.1%)
0.955 (2.6%)
0.892 (9.1%)

0.956 (3.7%)
0.752 (24.2%)
0.887 (10.7 %)
0.786 (20.8% )
0.788 (20.6%)

0.952 (4.4%)
).754 (24.3%)
).882 (11.5%)
).790 (20.7 %)

(
(
(
0.793 (20.4%)

0.966 (1.9%)
0.924 (6.3%)
0.964 (2.1%)
0.886 (10.1%)
0.920 (6.7 %)

0.935 (5.4%)
0.819 (17.1%)
0.929 (6.0% )
0.869 (12.1%)
0.854 (13.6%)

Random Forest
Bagging Tree
AdaBoost Tree

0.956 (3.1%)
0.954 (3.2%)
0.979 (0.7%)

0.903 (7.9%)
0.895 (8.7%)
0.930 (5.2%)

0.983 (1%)
0.976 (1.7%)
0.982 (1.1%)

0.978 (1.8%)
0.975 (2.1%)
0.984 (1.2%)

0.969 (1.6%)
0.973 (1.3%)
0.875 (11.2%)

0.957 (3.2%)
0.953 (3.6% )
0.954 (3.5%)

logreg
MVaccuracy
MVuniform
CART

0.982 (0.4% )
0.981 (0.5% )
0.980 (0.6% )
0.971 (1.5%)

0.960 (2.1%)
0.974 (0.7%)
0.973 (0.8%)
0.946 (3.6%)

0.981 (1.1%)
0.984 (0.9%)
0.980 (1.3%)
0.956 (3.6% )

0.978 (1.9%)
0.991 (0.6% )
0.984 (1.2%)
0.960 (3.6% )

0.941 (4.5%
0.972 (1.3%
0.980 (0.5%

)
)
)
0.968 (1.8%)

0.970 (1.9%)
0.981 (0.8% )
0.979 (1.0% )
0.959 (3.0% )

GML

0.986

0.981

0.993

0.996

0.985

0.989

GML does not only outperforms the most accurate first level learners...

...but also outperforms other ensemble-learning models based on bagging,

boosting and stacking

The GML model performs the best for all scenarios, suggesting a potentially
good approach to go for by default in similar NMA problems
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= Deep Learning for Malware Detection — Avoid Feature Engineering

= Explainable Artificial Intelligence (XAl) — Interpret Model Decisions

= Super Learning for Network Security — Avoid Model Decision

= Adaptive/Stream Learning for NetSec — Deal with Concept Drifts



Adaptive or Stream-based Learning (credits to Albert Bifet)

" Let us go a bit deeper into the problem of concept drift in supervised
learning

= And overview the main principles how to deal with concept drift

[ concept drift | Lonsensor

= Concept Drift (non-stationarity): the statistical properties defining the
relationships between input data and output target change over time.

= This causes problems because the predictions become less accurate as
time passes.



Concept Drift: a Trap for (off-line) Supervised Learning

training: learn a
mapping function

| )

Y raining = M (X rainin )
data X(d’) \Xnew g e
application: use learnt

function/model on
newly, unseen data

training

N4
Ynew = M (Xnew)
~—
X, .. | > | model M
training
A ...but what happens
Y*— iffwhen X, is derived
training from a different

distribution d’ d?



(off-line) Supervised Learning under Concept Drifts

= Detection of network attacks in MAWI — WIDE network

= 10-fold cross-validation, high detection performance with low FPR...
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(a) CART model.
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Figure 1: Detection performance (ROC curves) achieved by the different models for detection of network attacks.



(off-

line) Supervised Learning under Concept Drifts

..accuracy remains high for the first 3 weeks (training on first 3 days)...

..but models accuracy start to rapidly degrade over time

-~

VR 100 ~———

%

50 ‘.‘
40 - \

-8-DDoS \
30+ mptp-la s |
20 | |= =ping flood

=== netscan-UDP
10— netscan-ACK 9
i 2 3 4 5 6 7 8 8 10 2 3 4 5 8 7 8 9 10
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(a) CART model. (b) Detection of DDoS attacks.

Figure 2: Performance drift for the off-line trained models
along time. Training is done on the first 3 days of data.



Learning in an Online Setting — Stream/Adaptive Learning

= |n an online setting, data arrives continuously, as a stream of samples

= Adaptive learning consists of learning from continuous data in efficient
way, using a limited amount of memory

= Adaptive learning approaches work in a limited amount of time
-
O O O
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time
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As time evolves, the learning model is updated/re- :
trained if needed :
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Adaptation Strategies ﬁ ﬁ k KH

* Two main approaches for adaptation:
" re-train the model by carefully selecting the best data

= adjust the previously learnt model incrementally

—————————————————————————
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Desired Properties of a System to Handle Concept Drift  ~ ,’

Adapt fast to concept drift

Robust to noise, but adaptive to changes

Capable to deal with reoccurring contexts (avoid catastrophic
forgetting)

Use limited resources in terms of time and memory



What types of Concept Drift can we get?

= The change to the data could take any form

" |t is conceptually easier to consider the case where there is some temporal
consistency to the change

* Incremental drift: one could assume that data collected within a specific time
period show the same relationship and that this changes smoothly over time

time

mean

555808
” 4 u o0 OO00DO0O0

= But of course, other types of changes may include: Ej Ej Ej @ @

mean

time

= A gradual drift over time CA slElilals

= Arecurring or cyclical drift 0000 000 Ejt;me
A

= A sudden or abrupt drift : o0O00O000

000000

time




Adaptation Strategies to Concept Drift

= A taxonomy of approaches (A. Bifet, J. Gama)

\‘x\strategy

memory .

reactive
forgetting

single
L model )

4 )
ensemble

maintain
memory

\_ J
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change detection
and follow up

S triggering )

G

adapt at
every step

evolving
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Adaptation Strategies to Concept Drift

= A taxonomy of approaches (A. Bifet, J. Gama)

\‘x\strategy

memory . ‘ ‘ ‘
triggering evolving

single
model

ensemble




Adaptation Strategies to Concept Drift

= A taxonomy of approaches (A. Bifet, J. Gama)

\‘x\strategy
memory\‘\ . . .
triggering evolving
forgetting
single * forget old data
* re-train at fixed rate
model

 fixed windows

* instance weighting

ensemble




Fixed-size Training Window
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Adaptation Strategies to Concept Drift

= A taxonomy of approaches (A. Bifet, J. Gama)

. strategy
memory ™. _ . .
triggering evolving
detectors
single * detect a change and
discard the past
model

e variable windows

ensemble




Variable Training Window, Change Detection and Cut
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Adaptation Strategies to Concept Drift

= A taxonomy of approaches (A. Bifet, J. Gama)

\\\strategy
memory\‘\ ' . .
triggering evolving
single
model
dynamic ensemble
ensemble * build many models
e dynamically combine
e dynamic combination
rules




Dynamic Ensemble Learning
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Adaptation Strategies to Concept Drift

= A taxonomy of approaches (A. Bifet, J. Gama)

\\\strategy
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single
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ensemble




Contextual (Meta) Approaches

N
E Ej = partition training data to build multiple models
-
set 1 - model 1
0@
B = i
Bg=
=
=
i i set 3 = model 3
=
=1 b=
=

set 2 2 model 2



Contextual (Meta) Approaches

80
set 1 2 model 1

- model 3
i set 3
]

Ej i find which partition better represents the
new instance, and use the corresponding model

set 2 2 model 2



Adaptation Strategies to Concept Drift

= A taxonomy of approaches (A. Bifet, J. Gama)

\\\strategy
memory ™. . _
triggering
detectors
single * detect a change and
del discard the past
mode e variable windows
ensemble

evolving

forgetting
* forget old data
* re-train at fixed rate
* fixed windows
* instance weighting

dynamic ensemble
* build many models
e dynamically combine
e dynamic combination
rules




Adaptation Strategies to Concept Drift

= A taxonomy of approaches (A. Bifet, J. Gama)

\\\strategy
memory\‘\ _ . .
triggering evolving
detectors forgetting
single
model
dynamic ensemble
ensemble

recurring drift




Adaptive/Stream Learning Models for NetSec

= |Implement an adaptive approach using single models and a change-
detection algorithm to detect concept drifts

Take ADWIN (Adaptive WINdowing) to detect changes

ADWIN automatically grows the learning window when no change is
apparent, and shrinks it when concept drifts are detected

= Properties: automatically adjusts its window size to the optimum
balance point between reaction time and small variance



Adaptive WINdowing algorithm

The idea of ADWIN is straightforward:
= it keeps a sliding window W with the most recently observed data

= whenever two large enough sub-windows of W exhibit distinct enough
averages, the older portion of the window is dropped.

TAIL ADWIN scheme HEAD

- Tatl [[TTT
[ WU f W

1

1: initialize window W
2: for each ¢ > 0 do |
3: W« W U{x:} (add x; to the head of W) W

4 repeatdrop instances from the tail of W

5 until ||y, — iy, || > € for every split of W = W,-W;
6: return fiyy

7: end for

where iy, and [y, are the averages of the instances in W)
and W, respectively.



accuracy [%]

Adaptive/Stream Learning Models for NetSec

= Adaptive learning algorithms trained on labelled data, using ADWIN
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Stream-based Learning Models Performance

= Multiple stream machine learning models, using ADWIN

= Detection accuracy, normalized to batch-based algorithms performance
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Figure 1: Page-Hinkley Concept Drift Detection. Changes in ) SGD

the dataset distribution detected by the Page-Hinkley test.
Detected changes are marked with dashed lines.



Stream-based Learning Models Performance
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Improving Stream-based Active Learning by Reinforcement (RAL)

= How do we deal with the limited amount of labeled data?

Active Learning (AL): aims at labelling only the most informative samples

AL can be applied to the streaming scenario, to complement previous
approaches and reduce the amount of labeled data

{RAL — improves stream-based AL by Reinforcement Learning (RL)
= AL bases its decisions based EXCLUSUVELY on model uncertainty

= RAL permits to additionally learn in a feedback loop, based on the
effectiveness of the requested labels

= Reward in case asking oracle was informative (models would have predicted
wrong label)

K = Penalty otherwise /




RAL Principles and Components

‘ II il IIIIl

= RAL is based on an ensemble of models

= RAL makes use of contextual-bandit algorithms (EXP4) to tune the
decision powers of the different models depending on their behavior

= RAL uses a e-greedy approach to handle concept drift and improve the
exploration/exploitation trade-off

RAL y Oracle

l RL-based controller A

. ' , yes

y _+C0mmrtteeE Single > |
learners | learners e-greedy? F—no—»| query? l
I
A I
‘ I
I



RAL Principles and Components

)\l II il IIIIl

= The querying decision (ask or not for a label) is taken
based on model prediction uncertainty and a threshold

= Each algorithm in the ensemble (committee) gives its advice, based on its
prediction uncertainty

= RAL takes into account the decisions of the members + their decision power

" Obtained feedback influences the querying threshold:

= |n case of penalty, the threshold decreases.....otherwise, it slightly increases

RAL y Oracle

l RL-based controller A

. ' , yes

y _+C0mmrtteeE Single > |
learners | learners e-greedy? F—no—»| query? l
I
A I
‘ I
I



RAL Evaluation vs. State of the Art

= RAL vs RVU (Randomized Variable Uncertainty) and simple random sampling
(RS)

= Evaluation on data extracted from MAWILab - in the wild network security

= We divide each dataset into three consecutive parts:
= |nitial training set (variable size)
= Validation set (last 30%), to evaluate the classifiers

= Streaming set (remaining part of the dataset), for picking samples to learn from




RAL Evaluation vs. State of the Art — Prediction Accuracy
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RAL Evaluation vs. State of the Art — Querying Cost

100

. . . . 100 — . .
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So What’s Next?

= We're still far from making Al immediately applicable
= Limitations of learning process, data, models

Lack of generalization

Continual learning challenges — catastrophic forgetting and transfer

Lack of real knowledge generation — building simple mappings is easy

Portability of models to real deployments — plug & play?

" Effective Machine Learning — a mix of interesting challenges:

= Transfer learning
Explainable Al (XAl)
Multi-task learning

Meta learning

Hierarchical learning

= And back right to the start: the successful application of Al to
network measurement problems is still on an early stage
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