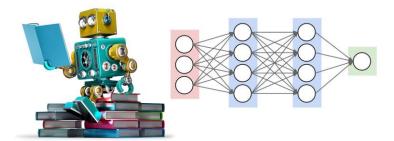


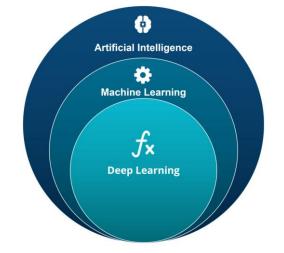
Deep Learning Basics

Dr. Pedro Casas Senior Scientist Data Science & Artificial Intelligence AIT Austrian Institute of Technology @Vienna

Deep Learning Basics



- Deep Learning 101
- Definitions and main Components
- Training Deep Neural Networks
- Convolutional Neural Networks (CNNs)



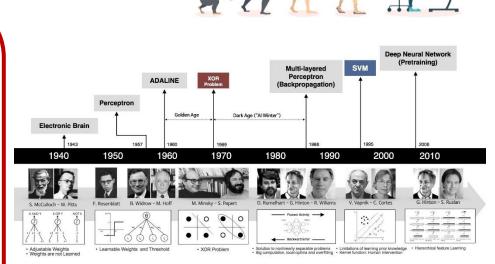
Deep Learning (<u>http://www.deeplearningbook.org</u>), by I. Goodfellow, Y. Bengio, A. Courville

Deep Learning – a bit of History

- 1943: Neural networks
- 1957: Perceptron
- 1974-86: Backpropagation, RBM, RNN
- 1989-98: CNN, MNIST, LSTM,

Bidirectional RNN

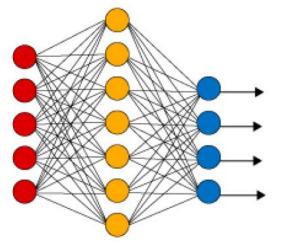
- 2016: AlphaGo
- 2017: AlphaZero, Capsule
 Networks (CapsNets)
- 2018: BERT transformers

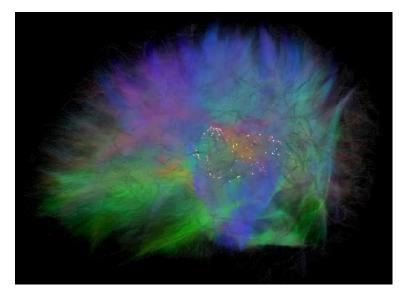


- 2006: "Deep Learning"
- 2009: ImageNet
- 2012: AlexNet, Dropout
- **2014: GAN**s
- 2014: DeepFace

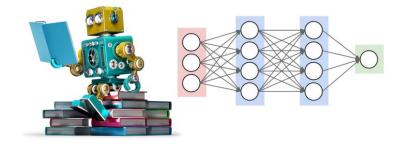
- What is Deep Learning (DL)?
- Recall: a feedforward network with a single layer is sufficient to represent (approximate) any function...
- ...but the layer may be infeasibly large and may fail to learn and generalize correctly...

Simple Neural Network

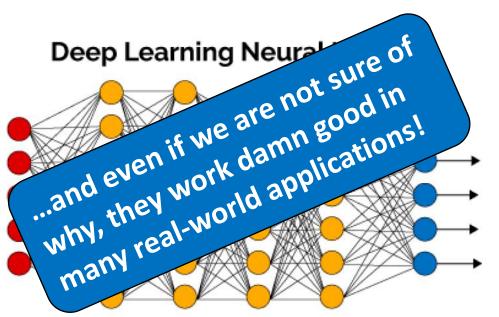




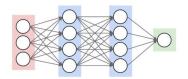
- Visualization of the human brain:
- 3% of the human brain neurons
- 0.0001% of neural synapses



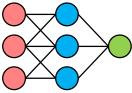
- What is Deep Learning (DL)?
- In simple terms: using a neural network with several layers of nodes between input and output.
- Deep Neural Networks (DNNs):



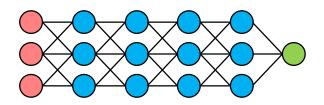
- exceptionally effective at learning patterns.
- hierarchical structure...
- ...can learn the hierarchies of knowledge that seem to be useful in solving real-world problems...



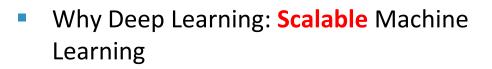
- hmmm...OK, but: multilayer neural networks have been around for 25 years. What's actually new?
- We have always had good algorithms to learn the weights in networks with 1 hidden layer...



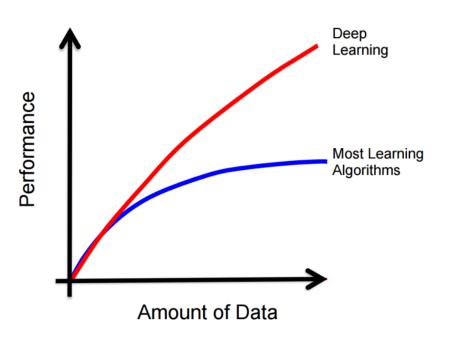
 ...but these algorithms are not good at learning the weights for networks with more hidden layers



What's new is: algorithms to train many-later networks

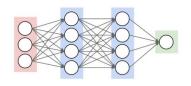


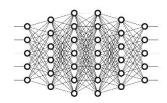
- The more the training data, the better the performance
- Why now: data, hardware, community, tools, investment



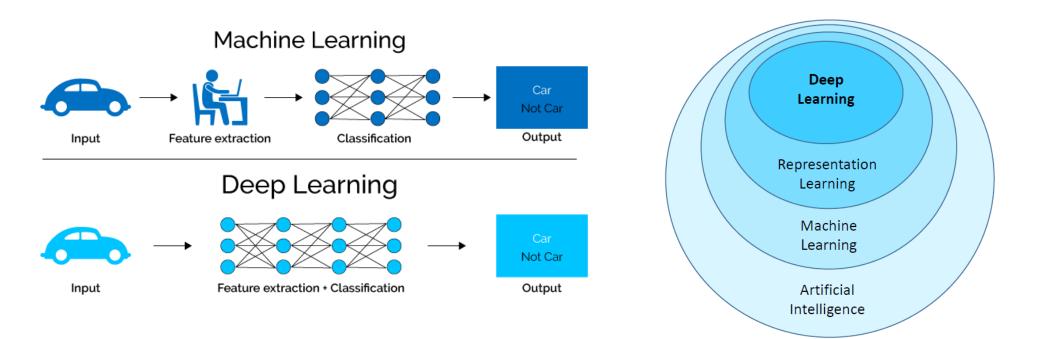
Exciting progress:

- Face recognition
- Image classification
- Speech recognition
- Text-to-speech generation
- Handwriting transcription
- Machine translation
- Medical diagnosis
- Cars: drivable area, lane keeping
- Digital assistants
- Ads, search, social recommendations
- Gaming

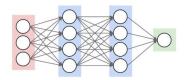




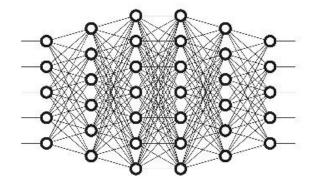
- One of the keys behind DL is the automatic learning of data representations
- DL algorithms attempt to learn (multiple levels of) representation by using a hierarchy of multiple layers



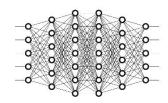
Deep Learning – Why is it Useful?



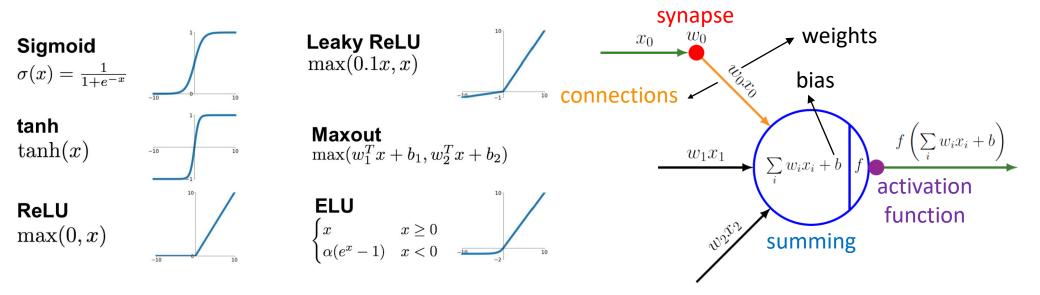
- Manually designed features are often over-specified, incomplete and take a long time to design and validate.
- Learned Features are easy to adapt, fast to learn.
- Deep learning provides a very flexible, (almost?) universal, learnable framework to represent world, visual and linguistic information.
- Can learn both unsupervised and supervised.
- Effective end-to-end joint system learning.
- Use massive amounts of training data.



Neural Networks – Neuron Model



- Artificial neurons are the computational building blocks for Artificial Neural Networks (ANNs)
- Inspired by natural brain neurons...



 ...but natural neurons and the human brain have probably nothing to do with ANNs!

ANNs (DNNs) vs the Human Brain

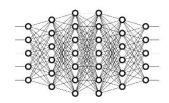
Human Brain

- Humans can learn from very few examples (embedded past knowledge)
- 100 billion neurons, 1.000 trillion synapses (DNNs x 10 M)
- Human brain has no layers, brain works asynchronously
- No clue how it learns, certainly NOT through backpropagation
- Life-long learning (non-stop learning), unsupervised and through exploration
- Energy-efficient (very little power)

DNNs

- DNNs need thousands/millions of examples, even to learn basic mappings
- ResNet 152: 60 million connections (weights)
- DNNs are synchronous
- Learning by gradient-descent (backpropagation)
- Mostly on supervised learning
- Get ready to pay the energy bill!

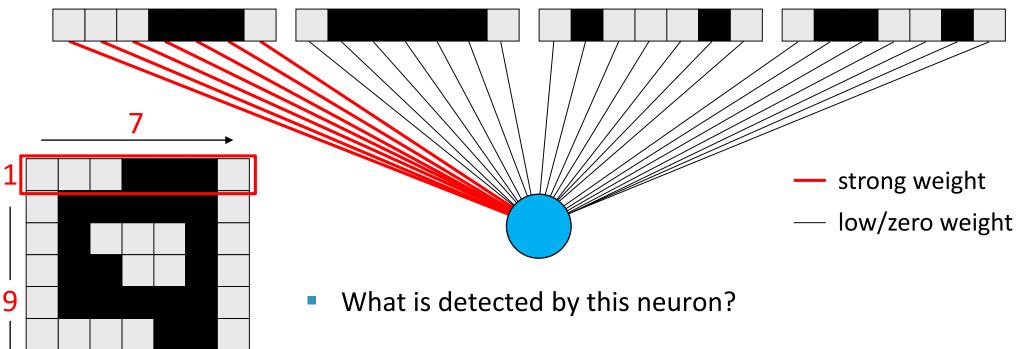
Deep Learning – Intuitive Example



Automatic learning of data representations – how?

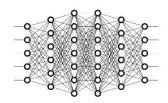
63

Input raw data, connection weights learn to detect specific feature maps

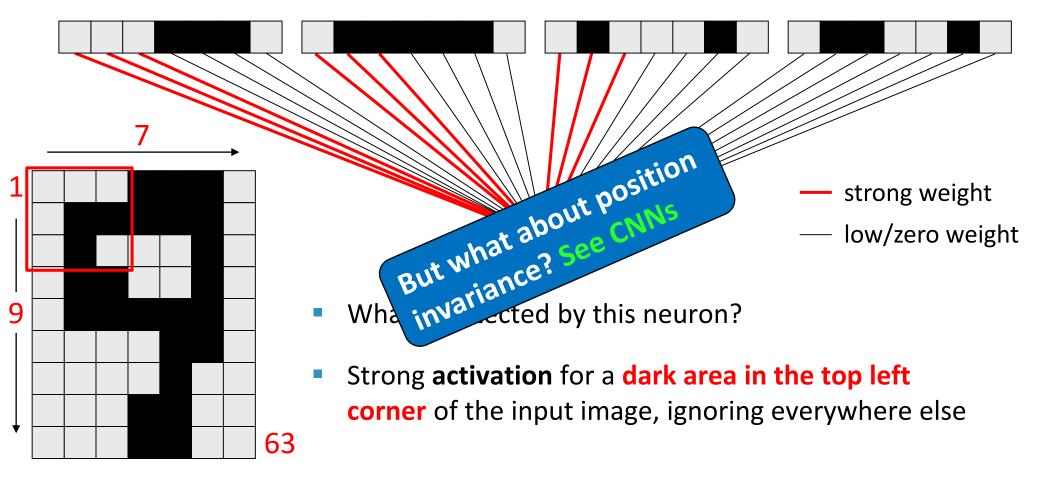


 Strong activation for a horizontal line in the top row of the input image, ignoring everywhere else

Deep Learning – Intuitive Example

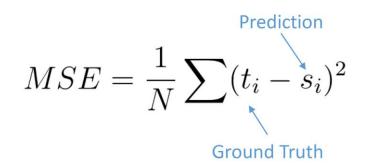


- Automatic learning of data representations how?
- Input raw data, connection weights learn to detect specific feature maps

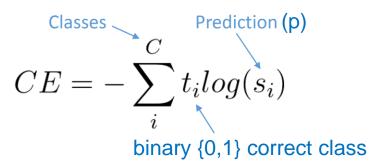


Deep Learning – Training

- Training a NN means setting/tuning all the free-parameters (weights and bias)
- This is achieved by solving an optimization problem, minimizing a certain loss function, which quantifies the gap between prediction and ground truth:
- Regression
 - Mean Squared Error (MSE)



- Classification
 - Cross Entropy Loss (CE)

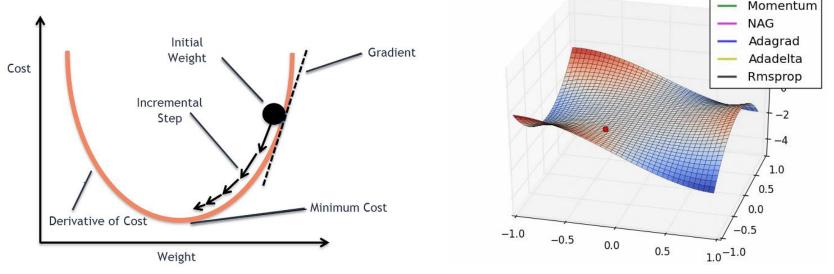


Optimization by Gradient Descent

How to iteratively minimize the loss function?

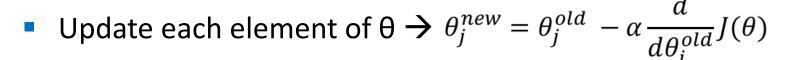
(04)

 Update the weights and bias by moving in the negative direction of the loss function derivate

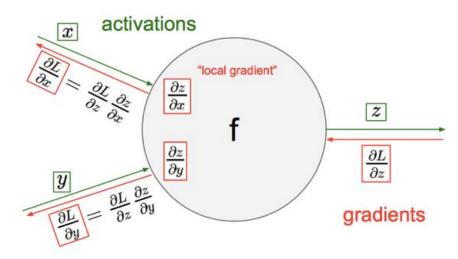


- Gradient is computed for the loss function w.r.t. weights/bias (θ)
- e.g., for MSE $\rightarrow J_n(\boldsymbol{\theta}) = ||\boldsymbol{\theta}^T \boldsymbol{x}_n \boldsymbol{y}_n||^2 \rightarrow \nabla_{\boldsymbol{\theta}} J_n(\boldsymbol{\theta}) = \boldsymbol{\theta}^T \left(\boldsymbol{\theta} \ \boldsymbol{x}_n \boldsymbol{y}_n\right) = \boldsymbol{\theta}^T \boldsymbol{\theta} \boldsymbol{x}_n \boldsymbol{\theta}^T \boldsymbol{y}_n$

Backpropagation



- Matrix notation for all parameters $\rightarrow \theta^{new} = \theta^{old} \alpha \nabla_{\theta} J(\theta)$ learning rate
- Computing the analytical expression for the gradient is straightforward
- ...but numerically evaluating the gradient is computationally expensive
- Solution: backpropagation
- Use the chain rule to sequentially compute the gradient through each node, re-using previous computations

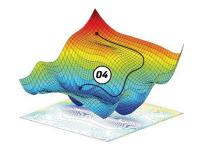


 $C'(W_h) = E_h \cdot X$

 $C'(W_o) = E_o \cdot H$

 $E_0 = (O-y) \cdot R'(Z_0)$

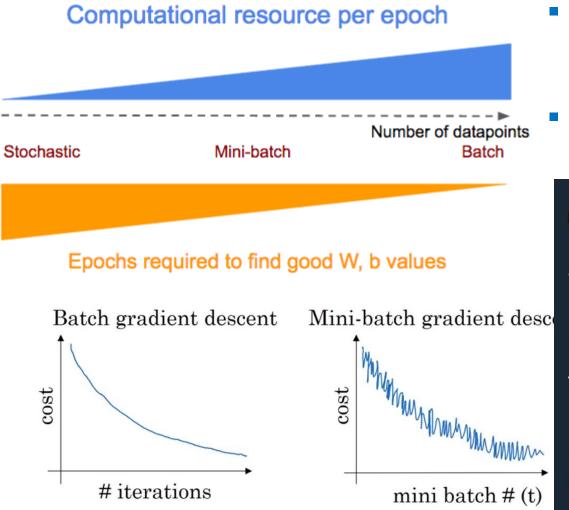
Batch Gradient Descent

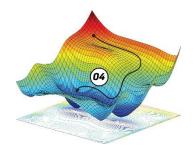


- How often and based on which data do we update weights?
 - **Epoch:** represents one iteration over the entire training data (size *m*)
 - Batch: if data is too big, we split it in batches
 - Iteration: an epoch is composed of data-size/batch-size iterations
- (1) Batch gradient descent: take all the training data to take one gradient decent step. This is very slow if you have large data set.
- (2) Online-training /stochastic gradient descent: each training example (or few of them) is a batch in itself. Weights are updated for each training example.
- (3) Mini-batch gradient descent: split the available data in batches of fixed size. Each gradient descent step takes batch-size of data samples to take one gradient decent step. Faster than batch gradient decent.

Batch Gradient Descent – Tradeoffs

• What's better, **smaller** or **larger batch size**?





- Larger batch size = needs more computational resources
- Smaller batch size = (empirically)
 better generalization

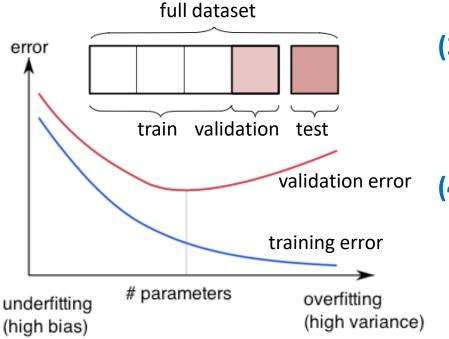
Yann LeCun @ylecun

Training with large minibatches is bad for your health. More importantly, it's bad for your test error. Friends dont let friends use minibatches larger than 32. arxiv.org/abs/1804.07612

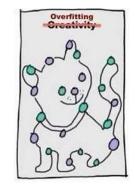
Regularization – fighting overfitting

Most important part of learning: generalize to unseen data

- (1) Early stopping: stop the training when the algorithm stops learning the underlying model
- (2) Dropout: randomly drop units (along with their connections) during training.
 At each iteration, each unit is retained with fixed probability p (usually p > 0.5), independent of other units



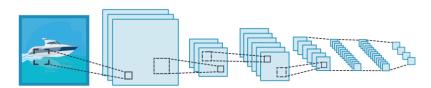
- Weight penalty/decay (e.g., L2): prevent big weights. Results in smoother models.
 e.g., (w/2; w/2) is better than (w; 0)
- (4) L1 weight decay: allows for a few weights to remain large



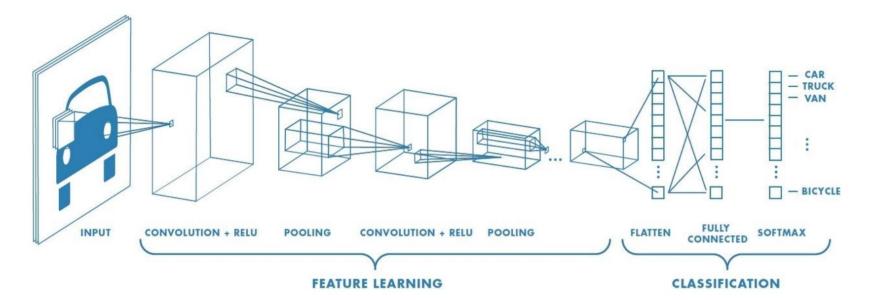
Data Normalization

- Data normalization helps to speed up the learning process, by keeping activations from going too high/too low.
- Input normalization: normalize network inputs, e.g.: normalize to [0,1], or according to mean & var., etc.
- Batch normalization (BN): normalize hidden layer inputs to minibatch mean & var. During training, the distribution of each layer's inputs changes as the parameters of the previous layers change. BN reduces impact of earlier layers on later layers.
- Many other alternatives:
 - Layer normalization (LN) conceived for RNNs
 - Instance normalization (IN) conceived for Style Transfer
 - Group normalization (GN) conceived for CNNs

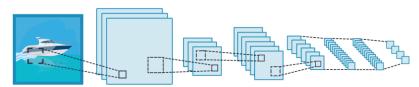
Convolutional Networks (CNN)



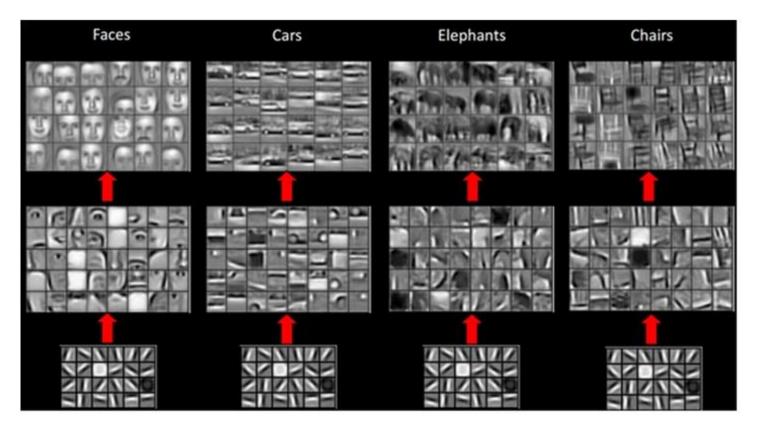
- Convolutional Neural Networks: build spatial features, reducing the number of parameters needed for image processing
- CNNs are specially conceived for image processing tasks, their success is the primary reason why deep learning is so popular
- Convolutional neural networks are composed by a set of layers with specific functionality



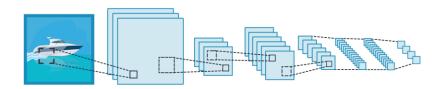
Convolutional Networks (CNN)



- CNNs detect features in images and learn how to recognize objects with them
- Layers near the start detect simple features like edges
- **Deeper layers** can detect more **complex features** like eyes, noses, or an entire face

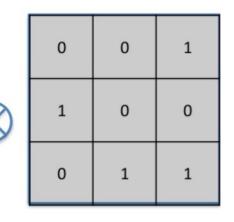


Convolutional Layer



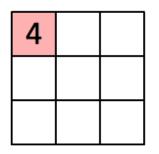
- Key idea: we change weights by *feature detectors* or filters, and drastically reduce connections
- Learning in CNNs is about calibrating the feature detector values
- In a nutshell: we learn **new filters**, which **discover specific characteristics** of the image
- Convolutional layers work as feature detectors, generating the so-called activation maps

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0



1 _×1	1 _{×0}	1 _×1	0	0
0 _{×0}	1 _×1	1 _×0	1	0
0 _{×1}	0 _×0	1 _×1	1	1
0	0	1	1	0
0	1	1	0	0

Image

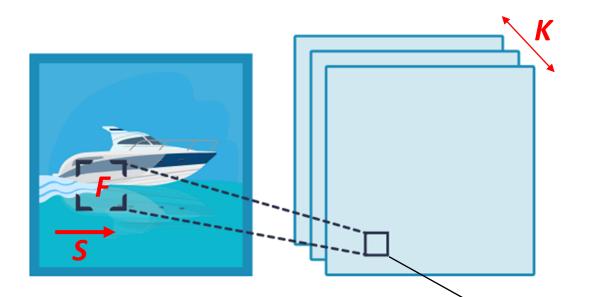


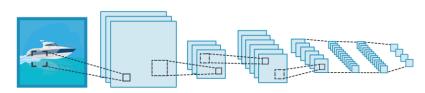
Convolved Feature

Input Image

Feature Detector

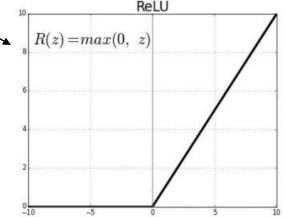
Convolutional Layer + ReLU



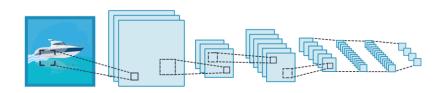


- Hyper-parameters :
 - the number of filters **K**
 - the size of the filters **F**
 - the stride S

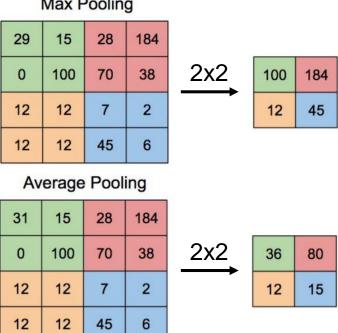
- The convolutional step is combined with an activation layer, usually ReLU – Rectifier Linear Unit
- Used to increase non-linearity of the network without affecting receptive fields of convolutional layers
- Prefer ReLU, results in faster training
- LeakyReLU addresses the vanishing gradient problem



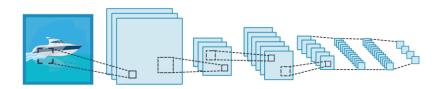
Pooling Layer



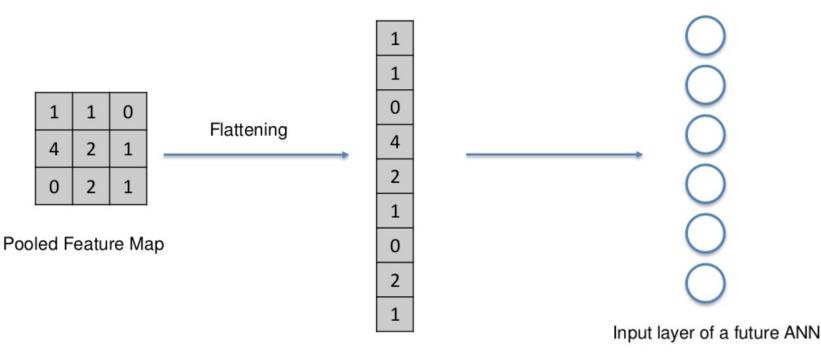
- The main goal of the pooling function is to progressively reduce the spatial size of the representation to reduce the amount of parameters and computation in the network
- Hence, it also controls overfitting
- A pooling function replaces the output of the network at a certain location with a summary statistic of the nearby outputs
 Max Pooling
- Pooling layers apply non-linear downsampling on activation maps
- Pooling is very aggressive (discard info)
- The trend now is to use smaller filter size and abandon pooling



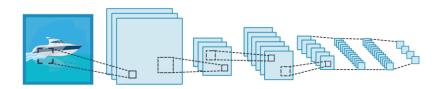
Flattening Layer



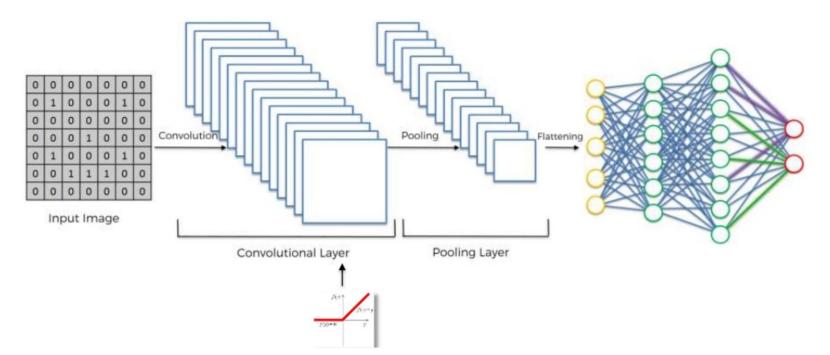
- Flattening is **converting the data into a 1-dimensional array**
- We flatten the **output of the pooling layers** to create a single long feature vector
- And it is connected to the final classification model, which is called a fully-connected layer



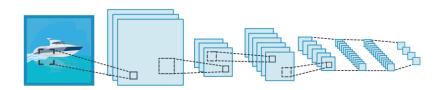
Fully-Connected Layer



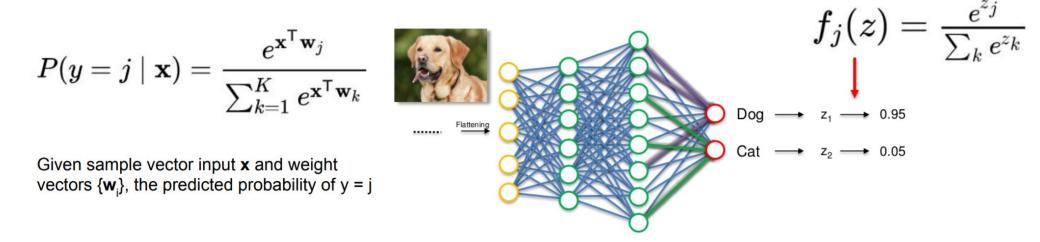
- Fully connected layer = Regular neural network
- It corresponds to the final learning phase, which maps extracted visual features to desired outputs (e.g., classification)
- Common output is a vector, which is then passed through a softmax function to represent confidence of classification



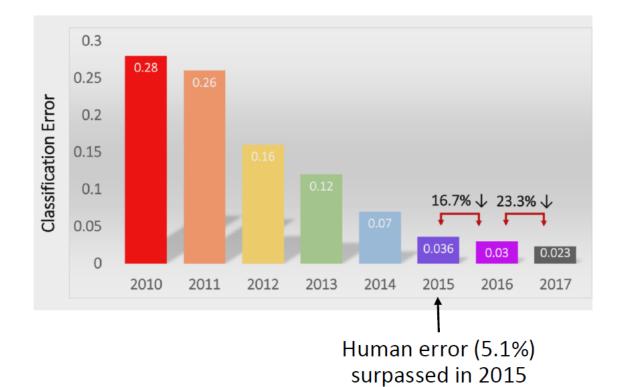
Softmax Layer



- A special kind of activation layer, usually used at the end of FC layer outputs
- Can be viewed as a normalizer, producing a discrete probability distribution vector
- The Softmax is used as the activation function in the output layer of the FC Layer, and ensures that the sum of the outputs is 1.
- The Softmax function takes a vector of arbitrary real-valued scores and squashes it to a vector of values between zero and one that sum to one



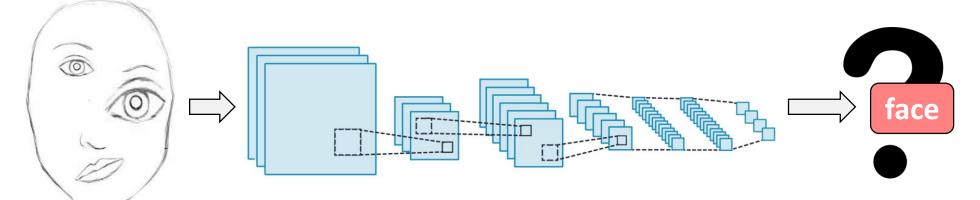
ImageNet Large Scale Visual Recognition Challenge

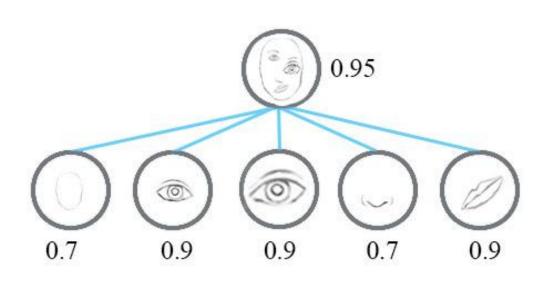


- AlexNet (2012): First CNN (15.4%)
 - 8 layers
 - 61 million parameters
- ZFNet (2013): 15.4% to 11.2%
 - 8 layers
 - More filters. Denser stride.
- VGGNet (2014): 11.2% to 7.3%
 - Beautifully uniform: 3x3 conv, stride 1, pad 1, 2x2 max pool
 - 16 layers
 - 138 million parameters
- GoogLeNet (2014): 11.2% to 6.7%
 - Inception modules
 - 22 layers
 - 5 million parameters (throw away fully connected layers)
- ResNet (2015): 6.7% to 3.57%
 - More layers = better performance
 - 152 layers
- CUImage (2016): 3.57% to 2.99%
 - Ensemble of 6 models
- SENet (2017): 2.99% to 2.251%
 - Squeeze and excitation block: network is allowed to adaptively adjust the weighting of each feature map in the convolutional block.

CNN Quiz

• What would this CNN detect?

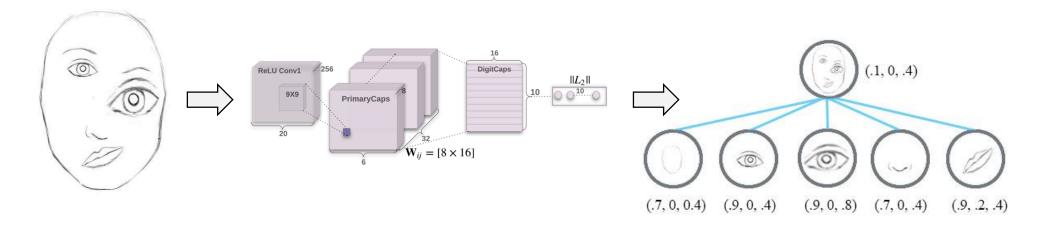




- CNNs have drawbacks in their basic architecture...
- ...causing them to not work very well for some tasks (max-pooling loses key valuable information)
- there is no spatial location information in a CNN!

Capsule Networks (CapsNets)

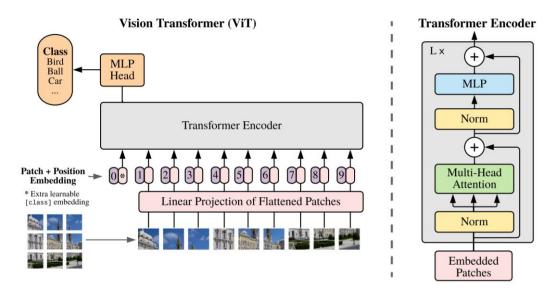
- In a nutshell: why not adding such information within the network?
- Capsule networks: encode not only probability of an object being present, but also spatial information
- Capsules: groups of neurons that encode spatial information (e.g., orientation and size) as well as the probability of an object being present.



 Capsule nets are still in a research and development phase and not reliable enough to be used in commercial tasks

The End of CNNs?

- ICLR 2021 paper (under review): "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale"
- While the Transformer architecture has become the de-facto standard for natural language processing tasks, its applications to computer vision remains limited....till Vision Transformer (ViT)
- Transformers: a new model to handle sequential data
- Hinton: "Transformers are CapsNets that work"...
- ...to be continued...



Thanks

Dr. Pedro Casas Data Science & Artificial Intelligence AIT Austrian Institute of Technology @Vienna

pedro.casas@ait.ac.at http://pcasas.info