
Big-DAMA: Big Data Analytics and

Platforms for Network Traffic Monitoring

and Analysis

Dr. Pedro Casas (http://pcasas.info)

Senior Scientist – Data Science & Artificial Intelligence

AIT Austrian Institute of Technology

Big data in Network Traffic Monitornig

▪ Network traffic monitoring generates LOT’S of data!

▪ e.g., at the local mobile operator @Austria
▪ 5 TB per day of aggregated data handled by DBStream, 150 TB

disk space, 100 TB used at the moment

▪ The 4 Vs of Big data (or 5 Vs, considering the potential Value)

▪ All of them are highly relevant for TMA
▪ Some applications require results NOW!

▪ Some others need to go through large amounts of measurements to
extract useful knowhow

▪ Which kind of system should I use?

Big Data Frameworks for NTMA
The Apache Hadoop Ecosystem

In a nutshell: what‘s is Hadoop?

▪ Hadoop is a software framework for storing, processing,

and analyzing very large data sets (big data)

▪ It’s distributed (HDFS + MapReduce)

▪ It’s scalable and runs on commodity hardware

▪ It’s fault-tolerant (it assumes hardware failures are common)

▪ It’s open source!

▪ Overseen by the Apache Software Foundation

▪ Active committers to core Hadoop from over 20 top-companies

(Cloudera, Intel, LinkedIn, Facebook, Yahoo, etc.)

▪ “Hadoop ecosystem”: hundreds more committers on other Hadoop-

related projects and tools

▪ Very active community, so system keeps growing and improving FAST!

The (growing) Hadoop Ecosystem
see https://hadoopecosystemtable.github.io/

Distributed

Filesystems

Distributed

Programming
NoSQL

Databases

NewSQL

DatabasesHadoop SQL

Databases

Data

Ingestion

Service

Programming

Scheduling

Machine

Learning

Benchmarking

Security

& Deployment

Applications

The (large and growing) Hadoop Ecosystem
see https://hadoopecosystemtable.github.io/

Some Examples of the Hadoop Ecosystem

Project Purpose

Spark In-memory execution framework

Hbase NoSQL database built on HDFS

Hive SQL processing engine designed for batch workloads

Impala SQL query engine designed for analytic workloads

Parquet Highly efficient columnar data storage format

Sqoop Data movement to/from RDBMSs

Flume
Kafka

Streaming data ingestion

Solr Highly efficient data-search engine

Hue Web-based user interface for Hadoop

Oozie Workflow scheduler used to manage jobs

Sentry Authorization tool, providing security for Hadoop

A Taxonomy on Big Data

Processing Engines

TMA user, non big data expert!

A Taxonomy on Big Data Storage Infrastructure

TMA user, non big data nor database expert!

Machine Learning (Big-data) Systems and

Libraries

TMA user,
non machine learning expert!

Why Hadoop? A bit of history....

▪ Traditionally, computation has

been processor-bound:

▪ Relatively small amounts of data

▪ Lots of complex processing

▪ The early solution: bigger

computers:

▪ Faster processor, more memory

▪ But even this couldn’t keep up

Distributed Systems

▪ The solution:

▪ Distributed systems

▪ Use a cluster of multiple machines for a

single job

“In pioneer days they used oxen for heavy pulling,

and when one ox couldn’t budge a log, we didn’t

try to grow a larger ox. We shouldn’t be trying for

bigger computers, but for more systems of

computers.”

– Grace Hopper (mother of compilers)

Distributed Systems: centralized storage

▪ Traditionally, data is stored in a central location

▪ Data is copied to processors at runtime

▪ OK for limited amounts of data…but fails with BIG DATA

The Hadoop Approach

▪ Two key concepts used by Hadoop’s distributed computing

▪ Distribute data when it is loaded into the system

▪ Run computation where the data is stored

▪ Add capacity by scaling out (more machines), not scaling up

(to a bigger machine)

▪ Hadoop makes distributed computing “transparent” to the

programmer

A bit of history....

▪ Hadoop is based on work done at Google in the late

1990s/early 2000s

▪ Google’s problem:

▪ Indexing the entire web requires massive amounts of storage

▪ A new approach was required to process such large amounts of data

▪ Google’s solution:

▪ GFS, the Google File System

▪ “The Google File System” @ACM SOSP 2003

▪ Distributed MapReduce

▪ “MapReduce: Simplified Data Processing on Large Clusters” @OSDI 2004

▪ Hadoop is based on these former papers, implemented as

a similar, open-source solution

The Hadoop Stack (2.0 and evolutions)

The Core of Hadoop

▪ The Hadoop Distributed File System (HDFS)

▪ Any type of file can be stored in HDFS

▪ Data is split into chunks and replicated as it is written

▪ Provides resiliency and high availability

▪ Handled automatically by Hadoop

▪ YARN (Yet Another Resource Negotiator)

▪ Manages the processing resources of the Hadoop

cluster

▪ Schedules jobs

▪ Runs processing frameworks

▪ MapReduce

▪ A distributed processing framework

=

(storage)

+

(scheduling)

+

(processing)

Hadoop HDFS (1/5)

▪ HDFS is the storage layer for Hadoop

▪ A file system which can store any type of data

▪ Provides inexpensive and reliable storage for massive

amounts of data

▪ Data is replicated across computers

▪ HDFS performs best with a “modest” number of large files

▪ Millions, rather than billions, of files

▪ Each file typically 100MB or more

▪ Files in HDFS are “write once”

▪ Data is immutable

▪ Appends are permitted

Hadoop HDFS (2/5)

▪ HDFS is a filesystem written

in Java

▪ Sits on top of a native

filesystem

▪ It’s scalable (add more nodes

to the HDFS)

▪ Fault tolerant (data

replication)

▪ And supports efficient data

processing with MapReduce,

Spark, and other frameworks

Hadoop HDFS (3/5)

▪ Data files are split into blocks and distributed to data nodes

▪ Each block is replicated on multiple nodes (default: 3x replication)

▪ NameNode stores metadata, useful for locating blocks

Hadoop HDFS (4/5)

Getting data in & out of HDFS

▪ Hadoop

▪ Copies data between client (local)

and HDFS (cluster)

▪ API or command line

▪ Ecosystem Projects

▪ Flume
▪ Collects data from stream

sources

▪ Sqoop
▪ Transfers data between

HDFS and RDBMSs

▪ Data Analytics Tools

Hadoop HDFS (5/5)

Storing & retrieving files

Hadoop Yarn

▪ Originally (v1.0), Hadoop only supported MapReduce as

processing framework

▪ MapReduce used all of the cluster’s processing resources

▪ Using YARN, a single cluster may run multiple processing

frameworks, such as MapReduce and Spark

▪ Each framework competes for the nodes’ resources

▪ YARN helps to manage this contention

▪ It allocates resources to different frameworks based on

demand, and on system administrator settings

Hadoop MapReduce

▪ MapReduce is a programming model

▪ Facilitates task distribution across multiple nodes

▪ Record-oriented data processing (key and value)

▪ Requires the programmer to write operations as a sequence of map and

reduce operations (additional burden, linear dataflow)

▪ MapReduce programs read input data from disk, map a function across the

data, reduce the results of the map, and store reduction results on disk.

▪ MapReduce was the original processing framework available

on Hadoop…

▪ …but it is mostly dropped today, replaced by faster frameworks for many

types of workloads (Spark, Dryad, Flink, etc.)

MapReduce example counting the appearance of each word in a set of documents:

function map(String name, String document):

// name: document name

// document: document contents

for each word w in document:

emit (w, 1)

function reduce(String word, Iterator partialCounts):

// word: a word

// partialCounts: a list of aggregated partial counts

sum = 0

for each pc in partialCounts:

sum += pc

emit (word, sum)

https://en.wikipedia.org/wiki/Map_(parallel_pattern)
https://en.wikipedia.org/wiki/Fold_(higher-order_function)

The Hadoop Ecosystem: some basics

▪ Data Integration: Flume, Kafka, and Sqoop

▪ Data Processing: Spark

▪ Data Analysis: Hive and Impala

▪ User Interface: Hue

▪ Data Storage: HBase

▪ Data Security: Sentry

▪ Deep Learning in Spark

Flume and Kafka (1/2)

▪ Flume and Kafka are tools for ingesting event data into

Hadoop as that data is being generated

▪ Network traffic

▪ Log files

▪ Streaming data

▪ Flume is typically easier to configure, but Kafka provides

more functionality

▪ Flume generally provides a path from a data source to HDFS or to a

streaming framework such as Spark

▪ Kafka uses a “Publish/Subscribe” model, allowing data to be consumed

by many different systems, including writing to HDFS

Flume and Kafka (2/2)

▪ They are ideal for aggregating event data from many

sources into a centralized location (HDFS)

▪ Well-suited for event driven data

▪ Network traffic

▪ Social-media-generated

▪ Digital sensors

▪ Log files

▪ Allow you to process streaming data as that data is being

generated

▪ Anomaly detection, network security, etc.

Sqoop

▪ Sqoop moves large amounts of data between relational

database management systems (RDBMSs) and HDFS

▪ Import tables (or partial tables) from an RDBMS into HDFS

▪ Export data from HDFS to a database table

▪ Uses JDBC to connect to the database

▪ Works with virtually all standard RDBMSs

▪ Custom “connectors” for some RDBMSs provide much

higher throughput

▪ Available for certain databases, such as Teradata and Oracle

Spark (1/3)

▪ Supports a wide range of workloads and interfaces with

most commercial systems

▪ Machine learning (Mllib, Mahout, spark.ml, databricks)

▪ Batch applications

▪ Iterative algorithms

▪ Spark is well-suited to iterative processing algorithms

▪ Runs in memory  It is WAY FASTER than MapReduce

▪ Apache Spark is a large-scale

data processing engine

▪ The default system for large-

scale distributed data analysis

Spark (2/3)

▪ Spark code can be written in Python, Scala, or Java

▪ Easier to develop for than MapReduce

▪ If you’re new to Hadoop, better to start with Spark and never write

MapReduce code

▪ Spark Streaming provides real-time data processing

features, processing data as that data is being generated

▪ Typically in conjunction with Flume or Kafka

Spark (3/3)

▪ Very active open project under Apache

▪ Databricks as the leading industry-framework pushing

Spark into the AI/ML domain  Deep Learning Pipelines for

Apache Spark

Hive and Impala (1/2)

▪ SQL engines on top of a Hadoop cluster

▪ Hive is an abstraction layer on top of Hadoop

▪ uses a SQL-like language called HiveQL

▪ No need to program in Java, Python, Scala, etc.

▪ The Hive interpreter uses MapReduce or Spark to actually

process the data

▪ Well suited for structured data

Hive and Impala (2/2)

▪ Apache Impala is a high-performance SQL engine

▪ Runs on Hadoop clusters

▪ Does not rely on MapReduce

▪ Very low latency—typically measured in milliseconds

▪ Impala supports a dialect of SQL very similar to Hive’s

▪ Impala is much faster than Hive

▪ Deals with multiple simultaneous queries much better

HUE

▪ Hue provides a Web front-end to a Hadoop cluster

▪ Upload data

▪ Browse data

▪ Query tables in Impala and Hive

▪ Search (using Apache Solr)

▪ Etc…

▪ Provides access control

for the cluster

▪ Makes Hadoop easier to

use (but not particularly

attractive for production)

HBase

▪ HBase is a NoSQL distributed database

▪ Stores data in HDFS

▪ Scales to support very high throughput for both reads and

writes

▪ Millions of inserts or updates per second

▪ A table can have many thousands of columns

▪ Handles sparse data well

▪ Designed to store very large amounts of data (Petabytes+)

▪ Avoid killing mosquitos with a hammer

Sentry

▪ Sentry provides fine-grained access control (authorization)

to various Hadoop ecosystem components

▪ Impala

▪ Hive

▪ Cloudera Search

▪ The HDFS command-line shell

▪ E.g., permission to view only certain columns in a given Hive table

▪ Might be worth checking if installing a cluster (Hadoop has

long supported Kerberos for authentication, but can be tricky to

set up)

Computational Hardware

▪ CPU – serial, general purpose, everyone has one

▪ GPU – parallelizable, still general purpose

▪ TPU – custom ASIC (Application-Specific Integrated Circuit) by Google,

specialized for machine learning, low precision

▪ Ascend – custom ASIC by Huawei, also specialized for ML

▪ Ascend 910 outperforms both GPU Tesla V100 and TPU 2.0 by 100%/50%,

with the greatest computing density achieved so far

Deep Learning in Spark (1/2)

▪ Neural Networks re-loaded, high benefits out of big-data and distributed
computation

▪ Deep learning mainly for Image Processing, some approaches appearing for TMA

▪ Many architectures to play around:

▪ Supervised:

▪ Multilayer perceptron

▪ Convolutional Neural Network

▪ Recurrent Neural Network

▪ Unsupervised and semi-supervised:

▪ Auto Encoders

▪ Deep Belief Networks

▪ Boltzmann Machines

▪ Computational frameworks:
▪ Deep learning is rooted in GPU-based processing and not computer clusters: many

thousands of processors within a single super-node

▪ …but integration is possible (see next)

Deep Learning in Spark (2/2)

▪ GPU-Driven High Performance Data Analytics in…….SPARK ☺ (by NVIDIA)

Big Data Frameworks for NTMA
and What About Deep Learning?

And What About Deep Learning?

▪ Lots of frameworks for Deep Learning

DL
frameworks

Most Popular Frameworks

▪ Papers at top ML conferences mentioning a specific framework

Most Contributed Frameworks

TensorFlow vs. Pytorch

▪ Using TensorFlow without Keras is

quite complex

▪ Debugging in TensorFlow is

complex

▪ TensorFlow 2.0 integrates Keras

directly, as well as a TF Eager API,

which improves debugging and

adds similar-to-pytorch features

▪ TF is a very powerful and mature

deep learning library

▪ It has production-ready

deployment options and support

for mobile platforms

▪ Pytorch is more intuitive and direct

▪ PyTorch, on the other hand, is still a

young framework with stronger

community movement and it's more

Python friendly

▪ If you want to make things faster and

build AI-related products,

TensorFlow + Keras is a good choice

▪ PyTorch is mostly recommended for

research-oriented developers

Pedro Casas

pedro.casas@ait.ac.at

Thanks You for Your

Attention!

