Big-DAMA: Big Data Analytics and Platforms for Network Traffic Monitoring and Analysis

Dr. Pedro Casas (http://pcasas.info)
Senior Scientist – Data Science & Artificial Intelligence
AIT Austrian Institute of Technology
Big data in Network Traffic Monitoring

- Network traffic monitoring generates a lot of data!
- e.g., at the local mobile operator @Austria
 - 5 TB per day of aggregated data handled by DBStream
 - 150 TB disk space, 100 TB used at the moment
- The 4 Vs of Big data (or 5 Vs, considering the potential V
 - All of them are highly relevant for TMA
 - Some applications require results NOW!
 - Some others need to go through large amounts of measurements to extract useful knowledge
- Which kind of system should I use?

BIG DATA?

I SHOULD BUY A HADOOP

Variety
Big Data Frameworks for NTMA
The Apache Hadoop Ecosystem
In a nutshell: what’s is Hadoop?

- Hadoop is a software framework for storing, processing, and analyzing very large data sets (big data)
- It’s distributed (HDFS + MapReduce)
- It’s scalable and runs on commodity hardware
- It’s fault-tolerant (it assumes hardware failures are common)
- It’s open source!
 - Overseen by the Apache Software Foundation
 - Active committers to core Hadoop from over 20 top-companies (Cloudera, Intel, LinkedIn, Facebook, Yahoo, etc.)
 - “Hadoop ecosystem”: hundreds more committers on other Hadoop-related projects and tools
 - Very active community, so system keeps growing and improving FAST!
The (growing) Hadoop Ecosystem
see https://hadoopecosystemtable.github.io/
The (large and growing) Hadoop Ecosystem
see https://hadoopecosystemtable.github.io/
Some Examples of the Hadoop Ecosystem

<table>
<thead>
<tr>
<th>Project</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spark</td>
<td>In-memory execution framework</td>
</tr>
<tr>
<td>Hbase</td>
<td>NoSQL database built on HDFS</td>
</tr>
<tr>
<td>Hive</td>
<td>SQL processing engine designed for batch workloads</td>
</tr>
<tr>
<td>Impala</td>
<td>SQL query engine designed for analytic workloads</td>
</tr>
<tr>
<td>Parquet</td>
<td>Highly efficient columnar data storage format</td>
</tr>
<tr>
<td>Sqoop</td>
<td>Data movement to/from RDBMSs</td>
</tr>
<tr>
<td>Flume</td>
<td>Streaming data ingestion</td>
</tr>
<tr>
<td>Kafka</td>
<td></td>
</tr>
<tr>
<td>Solr</td>
<td>Highly efficient data-search engine</td>
</tr>
<tr>
<td>Hue</td>
<td>Web-based user interface for Hadoop</td>
</tr>
<tr>
<td>Oozie</td>
<td>Workflow scheduler used to manage jobs</td>
</tr>
<tr>
<td>Sentry</td>
<td>Authorization tool, providing security for Hadoop</td>
</tr>
</tbody>
</table>
A Taxonomy on Big Data Processing Engines

Legend
- MapReduce related
- Spark related
- Dryad related
- Flink related
- Multiple execution engines
- Others

TMA user, non big data expert!
A Taxonomy on Big Data Storage Infrastructure

Relational SQL
- MySQL
- PostgreSQL
- Oracle
- SQL-lite

NoSQL
- Document oriented
 - MongoDB
 - CouchDB
 - CouchBase
 - Jackrabbit
- Key-value stores
 - Redis
 - Memcached
 - Aerospike
- Column oriented
 - DynamoDB
 - Voldemort
 - Riak
 - Cassandra
 - HBase
 - BigTable
 - HyperTable
- Graph oriented
 - Giraph
 - Neo4j
 - OrientDB
 - Titan
- In-memory
 - HStore
 - VoltDB
 - SQLfire
 - MemSQL
 - TokuDB

TMA user, non big data nor database expert!
Machine Learning (Big-data) Systems and Libraries

TMA user, non machine learning expert!
Why Hadoop? A bit of history....

- Traditionally, computation has been processor-bound:
 - Relatively small amounts of data
 - Lots of complex processing

- The early solution: bigger computers:
 - Faster processor, more memory
 - But even this couldn’t keep up
Distributed Systems

- The solution:
 - Distributed systems
 - Use a cluster of multiple machines for a single job

“In pioneer days they used oxen for heavy pulling, and when one ox couldn’t budge a log, we didn’t try to grow a larger ox. We shouldn’t be trying for bigger computers, but for more systems of computers.”

– Grace Hopper (mother of compilers)
Distributed Systems: centralized storage

- Traditionally, data is stored in a central location
- Data is copied to processors at runtime
- OK for limited amounts of data …but fails with BIG DATA
The Hadoop Approach

- Two key concepts used by Hadoop’s distributed computing
 - Distribute data when it is loaded into the system
 - Run computation where the data is stored

- Add capacity by scaling out (more machines), not scaling up (to a bigger machine)

- Hadoop makes distributed computing “transparent” to the programmer
A bit of history....

- Hadoop is **based on work done at Google** in the late 1990s/early 2000s

- **Google’s problem:**
 - Indexing the entire web requires massive amounts of storage
 - A new approach was required to process such large amounts of data

- **Google’s solution:**
 - GFS, the Google File System
 - “The Google File System” @ACM SOSP 2003
 - Distributed MapReduce
 - “MapReduce: Simplified Data Processing on Large Clusters” @OSDI 2004

- Hadoop is based on these former papers, implemented as a similar, open-source solution
The Hadoop Stack (2.0 and evolutions)

- MapReduce
- YARN (Cluster resource management)
- HDFS (Distributed File system)
- Oozie (Workflow, scheduling)
- File data
- Zookeeper (coordination)

Hadoop Core Components:
- YARN and MapReduce
- Hadoop Distributed File System
The Core of Hadoop

- The Hadoop Distributed File System (HDFS)
 - Any type of file can be stored in HDFS
 - Data is split into chunks and replicated as it is written
 - Provides resiliency and high availability
 - Handled automatically by Hadoop

- YARN (Yet Another Resource Negotiator)
 - Manages the processing resources of the Hadoop cluster
 - Schedules jobs
 - Runs processing frameworks

- MapReduce
 - A distributed processing framework
Hadoop HDFS (1/5)

- HDFS is the **storage layer** for Hadoop
- A file system which can store **any type of data**
- Provides **inexpensive and reliable storage for massive amounts of data**
 - Data is replicated across computers
- HDFS performs best with a **“modest” number of large files**
 - Millions, rather than billions, of files
 - Each file typically 100MB or more
- Files in HDFS are **“write once”**
 - Data is immutable
 - Appends are permitted
Hadoop HDFS (2/5)

- HDFS is a *filesystem* written in *Java*
- Sits on top of a native filesystem
- It’s *scalable* (add more nodes to the HDFS)
- *Fault tolerant* (data replication)
- And *supports* efficient data processing with *MapReduce*, *Spark*, and *other frameworks*
Hadoop HDFS (3/5)

- Data files are split into **blocks** and distributed to data nodes
- **Each block is replicated on multiple nodes** (default: 3x replication)
- NameNode stores **metadata**, useful for locating blocks
Hadoop HDFS (4/5)
Getting data in & out of HDFS

- **Hadoop**
 - Copies data between client (local) and HDFS (cluster)
 - API or command line

- **Ecosystem Projects**
 - **Flume**
 - Collects data from stream sources
 - **Sqoop**
 - Transfers data between HDFS and RDBMSs

- **Data Analytics Tools**
Hadoop HDFS (5/5)
Storing & retrieving files

Metadata
/logs/150808.log: B1, B2, B3
/logs/150809.log: B4, B5

NameNode
B1: A, B, D
B2: B, D, E
B3: A, B, C
B4: A, B, E
B5: C, E, D

Client
/logs/150808.log
/logs/150809.log

Node A
Node B
Node C
Node D
Node E

1 2 3 4 5
1 2 3 4 5
3 4 5
1 5
2 5
4

Client
/logs/150809.log
B4, B5

B4, B5
Hadoop Yarn

- Originally (v1.0), Hadoop only supported MapReduce as processing framework
 - MapReduce used all of the cluster’s processing resources

- Using YARN, a single cluster may run multiple processing frameworks, such as MapReduce and Spark
 - Each framework competes for the nodes’ resources

- YARN helps to manage this contention

- It allocates resources to different frameworks based on demand, and on system administrator settings
Hadoop MapReduce

- **MapReduce is a programming model**
 - Facilitates task distribution across multiple nodes
 - Record-oriented data processing (key and value)
 - Requires the programmer to write operations as a sequence of **map** and **reduce** operations (additional burden, linear dataflow)
 - MapReduce programs read input data from disk, **map** a function across the data, **reduce** the results of the map, and store reduction results on disk.

MapReduce example counting the appearance of each word in a set of documents:

```java
function map(String name, String document):
    // name: document name
    // document: document contents
    for each word w in document:
        emit (w, 1)

function reduce(String word, Iterator partialCounts):
    // word: a word
    // partialCounts: a list of aggregated partial counts
    sum = 0
    for each pc in partialCounts:
        sum += pc
    emit (word, sum)
```
The Hadoop Ecosystem: some basics

- **Data Integration**: Flume, Kafka, and Sqoop
- **Data Processing**: Spark
- **Data Analysis**: Hive and Impala
- **User Interface**: Hue
- **Data Storage**: HBase
- **Data Security**: Sentry
- **Deep Learning in Spark**
Flume and Kafka (1/2)

- Flume and Kafka are tools for ingesting event data into Hadoop as that data is being generated
 - Network traffic
 - Log files
 - Streaming data

- Flume is typically easier to configure, but Kafka provides more functionality
 - Flume generally provides a path from a data source to HDFS or to a streaming framework such as Spark
 - Kafka uses a “Publish/Subscribe” model, allowing data to be consumed by many different systems, including writing to HDFS
Flume and Kafka (2/2)

- They are ideal for aggregating event data from many sources into a centralized location (HDFS)

- Well-suited for event driven data
 - Network traffic
 - Social-media-generated
 - Digital sensors
 - Log files

- Allow you to process streaming data as that data is being generated
 - Anomaly detection, network security, etc.
Sqoop

- Sqoop moves large amounts of data between relational database management systems (RDBMSs) and HDFS
 - Import tables (or partial tables) from an RDBMS into HDFS
 - Export data from HDFS to a database table

- Uses JDBC to connect to the database
 - Works with virtually all standard RDBMSs

- Custom “connectors” for some RDBMSs provide much higher throughput
 - Available for certain databases, such as Teradata and Oracle
Spark (1/3)

- Apache Spark is a large-scale data processing engine
- The default system for large-scale distributed data analysis
- Supports a wide range of workloads and interfaces with most commercial systems
 - Machine learning (Mllib, Mahout, spark.ml, databricks)
 - Batch applications
 - Iterative algorithms
- Spark is well-suited to iterative processing algorithms
- Runs in memory → It is WAY FASTER than MapReduce
Spark code can be written in Python, Scala, or Java
 - Easier to develop for than MapReduce
 - If you’re new to Hadoop, better to start with Spark and never write MapReduce code

Spark Streaming provides real-time data processing features, processing data as that data is being generated
 - Typically in conjunction with Flume or Kafka
Spark (3/3)

- Very active open project under Apache

- **Databricks** as the leading industry-framework pushing Spark into the AI/ML domain → Deep Learning Pipelines for Apache Spark
Hive and Impala (1/2)

- SQL engines on top of a Hadoop cluster

- Hive is an abstraction layer on top of Hadoop
 - uses a SQL-like language called HiveQL
 - No need to program in Java, Python, Scala, etc.

- The Hive interpreter uses MapReduce or Spark to actually process the data

- Well suited for structured data
Apache Impala is a high-performance SQL engine
 - Runs on Hadoop clusters
 - Does not rely on MapReduce
 - Very low latency—typically measured in milliseconds

Impala supports a dialect of SQL very similar to Hive’s

Impala is much faster than Hive

Deals with multiple simultaneous queries much better
HUE

- Hue provides a Web front-end to a Hadoop cluster
 - Upload data
 - Browse data
 - Query tables in Impala and Hive
 - Search (using Apache Solr)
 - Etc…

- Provides access control for the cluster

- Makes Hadoop easier to use (but not particularly attractive for production)
HBase

- HBase is a NoSQL distributed database
- Stores data in HDFS
- Scales to support very high throughput for both reads and writes
 - Millions of inserts or updates per second
- A table can have many thousands of columns
 - Handles sparse data well
- Designed to store very large amounts of data (Petabytes+)
- *Avoid killing mosquitos with a hammer*
Sentry

- Sentry provides fine-grained access control (authorization) to various Hadoop ecosystem components
 - Impala
 - Hive
 - Cloudera Search
 - The HDFS command-line shell
 - E.g., permission to view only certain columns in a given Hive table

- Might be worth checking if installing a cluster (Hadoop has long supported Kerberos for authentication, but can be tricky to set up)
Computational Hardware

- **CPU** – serial, general purpose, everyone has one
- **GPU** – parallelizable, still general purpose
- **TPU** – custom ASIC (Application-Specific Integrated Circuit) by Google, specialized for machine learning, low precision
- **Ascend** – custom ASIC by Huawei, also specialized for ML
- **Ascend 910** outperforms both GPU Tesla V100 and TPU 2.0 by 100%/50%, with the greatest computing density achieved so far
Deep Learning in Spark (1/2)

- Neural Networks re-loaded, high benefits out of big-data and distributed

DEEP LEARNING - A NEW COMPUTING MODEL

“Training”

“Inference”

“SUPERHUMAN” RESULTS
SPARK HYPERSCALE ADOPTION

ImageNet

LEARNING ALGORITHM
“millions of trillions of FLOPS”

Known Ground Truth Labels

“cat”

ImageNet — Accuracy %

2010 2011 2012 2013 2014 2015

Human 72% 74% 76% 93% 96%

Deep Learning 84% 86% 88% Hand-coded CV
Deep Learning in Spark (2/2)

- GPU-Driven High Performance Data Analytics in...SPARK 🤗 (by NVIDIA)
Big Data Frameworks for NTMA and What About Deep Learning?
And What About Deep Learning?

- Lots of frameworks for Deep Learning

Diagram showing various deep learning frameworks:
- mxnet
- Keras
- Sonnet
- Theano
- Caffe
- Caffe2
- PyTorch
- Torch
- Microsoft Cognitive Toolkit
- Amazon AWS
- Google
- Microsoft
- CNTK
Most Popular Frameworks

- Papers at top ML conferences mentioning a specific framework
Most Contributed Frameworks

Apache Spark
- **Python**, **Scala**, **R**, **Java**, **Big Data**, **JDBC**, **SQL**, **Spark**
- 25,846 commits, 19 branches, 0 packages, 112 releases, 1,448 contributors

PyTorch
- 22,824 commits, 2,917 branches, 0 packages, 30 releases, 1,236 contributors

TensorFlow
- 73,309 commits, 42 branches, 0 packages, 98 releases, 2,292 contributors

An Open Source Machine Learning Framework for Everyone - https://tensorflow.org

Tensors and Dynamic neural networks in Python with strong GPU acceleration - https://pytorch.org
TensorFlow vs. Pytorch

- Using TensorFlow without Keras is quite complex
- Debugging in TensorFlow is complex
- TensorFlow 2.0 integrates Keras directly, as well as a TF Eager API, which improves debugging and adds similar-to-pytorch features
- TF is a very powerful and mature deep learning library
- It has production-ready deployment options and support for mobile platforms

- Pytorch is more intuitive and direct
- PyTorch, on the other hand, is still a young framework with stronger community movement and it's more Python friendly
- If you want to make things faster and build AI-related products, TensorFlow + Keras is a good choice
- PyTorch is mostly recommended for research-oriented developers
Thanks You for Your Attention!

Pedro Casas
pedro.casas@ait.ac.at