

DEEP in the NET – Deep Learning for TMA

Dr. Pedro Casas Senior Scientist Data Science & Artificial Intelligence AIT Austrian Institute of Technology @Vienna

10th TMA PhD School June 27, 2022

While AI has produced major breakthroughs in current data driven landscape...

...its successful application to data communication networks is still at a very early stage

Two decades of AI4NETS

- Cognitive Networking (1998): networks with cognitive capabilities which could learn from past observations and behaviors, to better adapt to end-to-end requirements.
- Term re-furbished along time, referring to it as self-organizing networks, self-aware networks, self-driving networks, intelligent networks, etc.
- However, there is a striking gap between the extensive academic research and the actual deployments of such AI-based systems in operational environments.
- Why? my take: there are still many unsolved complex challenges associated to the analysis of Networking data through AI/ML.
- Hot Topic in the agenda of main Internet players:
 - Network Operators
 - Network Vendors (self-driving networks)
 - Content Providers: the Internet business of end-user engagement

PAST

Machine Learning for Network Analytics Use Cases – What do I do @AIT?

- Network Traffic Monitoring & Analysis
- End-User Experience (Internet-QoE)
- Cybersecurity & Anomaly Detection
- Network Performance Forecasting

AI/ML and a Data Driven Approach to Science

Big Data + Machine (Deep) Learning = data driven analysis of complex systems

 The AI/ML model user is biased, or unaware of the limitations of AI/ML: model evaluation/testing, model certification, correlation vs causality

What is Blocking AI Success in Networking?

Lack of Learning Generalization: it becomes extremely difficult in the networking practice to learn models which can generalize to operational environments

Organization of the Talk Dealing with Some of the Challenges in AI4NETS

- Deep Learning for Malware Detection Avoid Feature Engineering
- Generative Models for Anomaly Detection Avoid Traffic Modeling
- Explainable Artificial Intelligence (XAI) Interpret Model Decisions
- Super Learning for Network Security Avoid Model Decision
- Adaptive/Stream Learning for NetSec *Deal with Concept Drifts*
- Reinforced Active Learning *Deal with Lack of Ground Truth*

Let's take a step back and set a common ground 😳

Organization of the Talk Dealing with Some of the Challenges in AI4NETS

- Deep Learning for Malware Detection Avoid Feature Engineering
- Generative Models for Anomaly Detection Avoid Traffic Modeling
- Explainable Artificial Intelligence (XAI) Interpret Model Decisions
- Super Learning for Network Security Avoid Model Decision
- Adaptive/Stream Learning for NetSec *Deal with Concept Drifts*
- Reinforced Active Learning *Deal with Lack of Ground Truth*

Artificial Intelligence – As Smart as a Donut!

 Machine Learning is still very stupid – the big revolution is on big data processing and data availability/accessibility

• **Current ML benefits** are fundamentally due to machines ability to **blindly**:

- compute lots of math operations per second
- handle large amounts of data
- deal with data in high-dimensional spaces
- A lot of data required to "learn" simple logical inter-relations
- Shallow Learning: less data but human expert knowledge required, to properly guide the feature engineering process
- Deep Learning: automated feature engineering (representation learning) but needs much more data

RawPower

we explore **deep learning** for *blind* malware detection in network traffic

Shallow Learning vs Deep Learning

Basic Concepts of RawPower

- The input to the Deep Learning model is RAW only byte-streams
- No need to define tailored, domain-knowledge-based input features

- Different architectures to analyze both packet-based and flow-based byte aggregations
- Models for binary malware detection fully supervised-based training

Raw Input Representations

- Input representation of the data, as well as network architecture, are both key elements to consider when building a DL model
- We take two types of raw input representations: packets and flows. Decimal normalized representation of every byte of every packet is a different input
- Flow representation: matrix-like input, first m packets x first n bytes

Deep Learning – Architectural Principles

- The core layers used for both models are basically two: convolutional and recurrent
- Convolutional, to build the feature representation of the spatial data inside the packets and flows
- Recurrent layers are used together with the convolutional ones to allow the model keeping track of temporal information
- Fully-connected layers to deal with the different feature combinations
- Batch Normalization: layer inputs are normalized for each mini-batch. As a result: higher learning rates can be used, model less sensitive to initialization and also adds regularization
- Dropout: randomly drop units (along with their connections) from the neural network during training. A very efficient way to perform model averaging

DL Architectures – Packets

- Raw Packets Architecture:
 - **n** is set to first **1024 bytes**
 - two 1D-CNN layers of 32 and 64 filters (size 5) respectively
 - MP max pooling layer (size 8)
 - LSTM layer with 200 neurons
 - two fully-connected layers of 200 neurons each
 - binary cross-entropy as loss function
 - spatial and normal batch normalization layers after each 1D-CNN and FC layers to ease training

DL Architectures – Flows

- Raw Flows Architecture: we go for a simpler model, with less features
 - n is set to first 100 bytes, and m to first 2 packets
 - one 1D-CNN layers of 32 filter (size 5)
 - two fully-connected layers of 50 and 100 neurons each
 - binary cross-entropy as loss function
 - spatial and normal batch normalization layers
 - dropout layers to add regularization to the model

Evaluations

- All evaluations run on top of **Big-DAMA cluster** (distributed CPU)
- Keras framework running on top of TensorFlow
- Dataset: malware and normal traffic captures (pcap) performed by the Stratosphere IPS Project of the CTU University of Prague
- 250.000 raw packet instances, 70.000 raw flow instances
- 80% of the samples for training, 10% for validation and 10% for testing
- **Compare** performance to **highly expressive Random Forest**:
 - same raw inputs
 - 100 trees
 - max depth and instances per leaf set for high expression
 - selected based on great outperformance in state of the art

RawPower – Packet Representation

 Malware consists of 10 different malware types, collected at controlled environment

- **ROC curves** for both RawPower and RF
- Both models using the same raw packet inputs
- Performance is not good at the packet-level
- Little gain w.r.t. a simple RF model

RawPower – Flow Representation vs Shallow ML

- Training and validation evolution over 10 epochs
- Much better performance at the flow level
- RawPower can detect almost 98% of the malware flows with a FPR < 0.5%</p>
- Shallow models not able to capture the underlying relations

RawPower – Flow Representation vs Expert Features

- Comparison against traditional RF-based model, which uses highly engineered input features, extracted from domain knowledge
- Both models provide comparable results
- The key advantage of RawPower is to rely directly on the usage of bytestream raw data as input
- Input representation learning: no the need for feature engineering

Organization of the Talk Dealing with Some of the Challenges in AI4NETS

- Deep Learning for Malware Detection Avoid Feature Engineering
- Generative Models for Anomaly Detection Avoid Traffic Modeling
- Explainable Artificial Intelligence (XAI) Interpret Model Decisions
- Super Learning for Network Security Avoid Model Decision
- Adaptive/Stream Learning for NetSec *Deal with Concept Drifts*
- Reinforced Active Learning *Deal with Lack of Ground Truth*

Anomaly Detection in Multivariate Time-Series

Anomalies in an univariate time series

TIME

- Anomaly Detection (AD) is, by definition, an unsupervised process (detect what is different from the majority the baseline)
- Baseline construction (i.e., system modeling) is complex and error prone, especially when dealing with multi-dimensional system characterization
- Solution: delegate the baseline construction to generative models

Generative Models

Given training data, generate new samples from same distribution

Generative model learning is about density estimation:

Training data $\sim p_{data}(x)$

- Explicit density estimation: explicitly define and solve for p_{model}(x)
- Implicit density estimation: learn model that can sample from p_{model}(x) w/o explicitly defining it

Generated samples $\sim p_{model}(x)$

Generative Adversarial Networks (GANs)

- Implicit density estimation through game-theoretic approach
- Learn to generate samples from training distribution through 2-players (minimax) game
- Problem: want to sample from potentially complex, high-dimensional training distribution. No direct way to do this!
- Solution: sample from a simple distribution, e.g. random noise. Learn transformation to training distribution, using a neural network

- Generator network: tries to fool the discriminator by generating real-looking instances from random noise
- **Discriminator** network: tries to distinguish between real and fake instances

Two different generative models for **AD** in multi-variate time series

- *Net-GAN*: Recurrent Neural Networks (LSTM) trained through GANs
- *Net-VAE*: Variational Auto-Encoders (VAE) using feed-forward NNs
 - VAEs improve Auto-Encoders by *regularizing the latent-space* → enabling *generative process*
- Input samples: matrix with n (number of variables) x T (length of sequence)

Network Anomaly Detection with Net-GAN

 Net-GAN detection can be done both through the generator (G) and the discriminator (D)

Examples on Real (Mobile) ISP Network Data

Net-GAN application phase

Net-GAN AD generator (G) → residual loss

■ Net-GAN AD discriminator (D) → discrimination loss

Network Anomaly Detection with Net-VAE

- Net-VAE architecture:
 - standard encoder and decoder functions
 - encoder/decoder using 3-layer FF networks
 - detection on *residual loss*

Net-VAE architecture.

Anomaly Detection with Net-GAN and Net-VAE

CICIDS2017 (SYN-NET measurements)

Variational Auto-Encoders with Dilated Convolutions

- Unsupervised and multivariate approach to anomaly detection in time-series, based on VAEs
- VAEs are a *generative version of classical autoencoders*, with the particularity of having, by conception, continuous latent spaces; as such, *VAEs enable a generative process* (e.g., GANs)
- To exploit the temporal dependencies and characteristics of time-series data in a fast and efficient manner, we take a Dilated Convolutional Neural Network (DCNN) as the VAE's encoder and decoder architecture

(a) Normal convolution.

- Using CNNs with causal filters requires large filters or many layers to learn from long sequences
- **Dilated convolutions** improves time-series modeling by increasing the receptive field of the neural network (**longer in the past sequences**)...
- ...reducing computational and memory requirements, enabling training on long sequences

- Example of time-series analysis through DC-VAE. The normal-operation region is defined by μ_x and σ_x
- Encoder architecture using causal dilated convolutions, implemented through a stack of *1D convolutional layers*

TELCO dataset time-series, for a period of four days, along with the corresponding *DC-VAE* estimations. The temporary receptive field – i.e., length of the rolling time-window, is T = 512 samples, spanning about two days of past measurements.

DC-VAE – Application Examples in **TELCO Datasets** (2/3)

DC-VAE operation for time-series with stationary behavior. Weekly

(b) Example of real anomalies in TS_2 .

DC-VAE – Application Examples in **TELCO Datasets** (3/3)

Fig. 14. *DC-VAE* response to univariate concept-drift: a gradual linear fall of the values during the day without affecting night behavior. While the drift does not affect the predictions on the other time-series, it becomes easily detectable at the corresponding time-series.

Multivariate modeling helps to cope with concept-drift detection

Organization of the Talk Dealing with Some of the Challenges in AI4NETS

- Deep Learning for Malware Detection Avoid Feature Engineering
- Generative Models for Anomaly Detection Avoid Traffic Modeling
- Explainable Artificial Intelligence (XAI) Interpret Model Decisions
- Super Learning for Network Security Avoid Model Decision
- Adaptive/Stream Learning for NetSec *Deal with Concept Drifts*
- Reinforced Active Learning *Deal with Lack of Ground Truth*

EXplainable AI (XAI) – Why Should I Trust You?

- ML models → mostly are black boxes (exceptions: linear models, decision trees, etc.) e.g.: some popular ML models have 10s of millions of parameters!
- Models are evaluated off-line before deployment on available test datasets – data @runtime might change (concept drift)
- Humans want to understand model's behavior to gain trust (applicability in the practice)
 - trusting an individual model's prediction
 - trusting a model (inspect a set of representative individual predictions)
- **Explainable AI:** approaches capable to explain models and individual predictions, by tracking back to the inputs leading to a certain output

Why XAI?

- Ideally, ML models should be self-explanatory: improve end-user understanding and trust, by offering simple explanations of the "whys" of certain decision
- Only few models are self-explanatory:

model complexity

A Simple XAI Example

• **Application Example:** Al-supported disease diagnosis

Model

- Explainer: LIME Local Interpretable Model-agnostic Explanations
- LIME approach: builds an interpretable model that is locally faithful to the classifier under analysis
- Other approaches: SHAP, LRP (NNs), PDP, etc.

LIME in a Nutshell – Sampling for Local Exploration

Let **f** be an unknown complex decision function (blue/pink background)

- g is *interpretable*, *locally faithful* to f (captured by D_x), and *model* agnostic (uses f(z) as labels)
- robust to sampling noise, thanks to D_x

complex model **f**

- The **bold red-cross (x)** is the instance we want to explain
- LIME samples instances z around x, weighted by some similarity measure D_x → D_x(z) is higher for instances closer to x
- Using model **f**, gets the corresponding predictions **f(z)**
- Finally, it uses z and f(z) to build an interpretable model g (e.g, linear) around x

LIME Examples (I) – Model Comparison/Selection

- Task: word-based email classification, Christianity or Atheism
- 2 models (Algorithm 1 vs Algorithm 2), which one is better?

- Algorithm 2 is better than Algorithm 1 in terms of accuracy in validation...
- ...but Algorithm 2 makes predictions for arbitrary reasons...Algorithm 1 is better
- Performance metrics should be carefully considered

LIME Examples (II) – Model Performance Evaluation

Task: image classification, using Google's pre-trained Inception CNN architecture

(a) Original Image

- Figs. (b,c,d) report super-pixel explanations provided by LIME
- Top 3 classes: *Electric Guitar* (*p* = 0.32), *Acoustic Guitar* (*p* = 0.24), and *Labrador* (*p* = 0.21)
- The image is wrongly classified, but explanations provide trust in the model, as they are reasonable

LIME Examples (III) – Discover Biased Data

- Task: train a classifier to distinguish between Wolves and Huskies
- Biased data (e.g., **undesirable strong correlations**) → wrong classifier
- Hard to identify by looking at the raw data and predictions

(a) Husky classified as wolf

(b) Explanation

- Bias@training: all pictures of
 Wolves had snow in background
- The classifier performs well according to cross-validation in this biased dataset...

…but explanations of individual predictions show that the model learnt a biased pattern: if snow → wolf, else → Husky

Organization of the Talk Dealing with Some of the Challenges in AI4NETS

- Deep Learning for Malware Detection Avoid Feature Engineering
- Generative Models for Anomaly Detection Avoid Traffic Modeling
- Explainable Artificial Intelligence (XAI) Interpret Model Decisions
- Super Learning for Network Security Avoid Model Decision
- Adaptive/Stream Learning for NetSec *Deal with Concept Drifts*
- Reinforced Active Learning *Deal with Lack of Ground Truth*

Ensemble Learning for Network Security

- Which is the best model or category of models for a specific learning task?
- Deep Learning? Not obvious in the context of Network traffic Monitoring and Analysis (NMA)
- Our claim: "*multiple-eyes principle*" → ensemble learning models
- We explore the application of ensemble learning models to multiple NMA problems...
- ...following a particularly promising model known as the Super Learner

Ensemble Learning for Network Security

ensemble learning:

combine multiple (base) learning models to obtain better performance.

- If a set of base learners do not capture the true prediction function (the oracle), ensembles can give a good approximation to that oracle function.
- Ensembles perform better than the individual base algorithms.
- Multiple approaches to ensemble learning, including bagging (decrease variance), boosting (decrease bias), and stacking (improve predictive performance)

Super Learner

- General ensemble learning approaches might be prone to over-fitting.
- Super Learner [Van der Laan'07]: stacking ensemble learning meta-model that minimizes over-fitting likelihood using a variant of cross-validation.
- Finds the optimal combination of a collection of prediction algorithms → performs asymptotically as well or better, than any of the base learners.

Super Learner – How Does it Work?

2-steps approach (training and validation of Super Learner):

2rd train en(f) efattes et base base for the set of the set

GML Learning for NMA

- The Super Learner meta-model could be whatever algorithm
- The original work [Van der Laan'07] uses a simple minimum square linear regression model as the example Super Learner.
- **Problem**: how to **define weights** to **perform** properly in **every dataset**?
- GML Learning: computes weights with an exponential probability of success, reducing the influence of poor base learning models.

Models Benchmarking

B₿G DAMA

We compare several models for NMA:

 We take 5 standard base learning models: linear SVM, CART, k-NN, ANN (MLP) and Naïve Bayes

We build 4 different Super Learners:

- **1.** Logistic regression (binary output 0/1)
- 2. Weighted Majority Voting (MV):
 - MVuniform: same weight to each base learner
 - MVaccuracy: weights are computed using base learner accuracy
- **3. Decision Tree meta-learner** (CART)
- Boosting (ensemble learning): AdaBoost tree
- Bagging (ensemble learning): Bagging tree and Random Forest
- GML Learning

Multiple NMA Problems

Five network measurement problems for model benchmarking:

- 1. NS *detection of network attacks* in WIDE/MAWI traffic (transpacific links)
- AD detection of smartphone-apps anomalies in cellular networks (data captured at core cellular network)
- 3. QoE-P QoE prediction in cellular networks (data captured at smartphones)
- 4. QoE-M QoE-modeling for video streaming (smartphones public datasets)
- PPC Internet-paths dynamics tracking prediction of path changes (M-Lab traceroute measurements)

(some) Evaluation Datasets

- We focus on two NMA problems:
 - Detection of Network Attacks in WIDE/MAWI network traffic
 - Detection of App-related Anomalies in an Operational Cellular Network

		Field	F	eature	Description	
Synthetically menefited has the	nada in cellular n	etworks	ŧ	# pkts	num. packets	
				f bytes pkt_h	num. bytes H(PKT)	-
charitive of around capature loudari USB	measuremeints lite	rafikirszme	ASLIN	emento	min/max/std, PKT	_
			pkt_p{1,2	2,5,95,97,99}	percentiles	
MANTER BERNERS PARTIE - MANTER BERNERS - MANTER BERNER	014) f four traditi			protocols	num. diff. IP protocols	:
	TD Droto	ipp_h		H(IPP)	_	
Abemaly John plates; affective children	Туре	E_1		E_2	E_3	
thattackelasses! Dob's, Haishe	Start time t_1	9:00		13:00	18:00	
Fraluation tapalled dataseter	Duration d	2h		1 day	1h	
differenterpinaly instances ve	Involved devices D	10%		5%	3%	
 intensity (number of involved) 245 features describe the traf 	Back-off time	5 sec		180 sec	c 20 sec	
	Manufacturer	single pop	oular	multiple	e multiple	
 36 features describing 10' tim These include throughput, pad These include FODMs, DNS are 	OS	single	e	single	multiple	
Tabasesises and ports, transport	Error flag	+5% tim	eout			
(eanpifacarusestkeoneirica, saintri	FQDN	top-2L	D	top-2LI	D top-2LD	I
and more		Table				
	Anomalous DNS traffic features for types E_1, E_2, E_3					

Benchmark for Network Security

(d) Netscan UDP.

(e) Netscan TCP-ACK.

Benchmark for Network Security

- Super Learners (SLs) outperform both base learners, as well as the RF model
- The CART SL performs the worst → regression-based models are more accurate for SL
- GML slightly outperforms other SLs

Benchmark for Network Security

	DDoS			
CART	0.745			
Naïve Bayes	0.730			
MLP	0.907			
SVM	0.883			
kNN	0.720			
Random Forest	0.827			
Bagging Tree	0.823			
AdaBoost Tree	0.892			
logreg	0.926			
MVaccuracy	0.924			
MVuniform	0.923			
CART	0.867			
GML	0.935			

- We take the Area Under the ROC Curve (AUC) as benchmarking metric
- SLs performance increase is higher when base learners perform worse
- Even if slightly, the **GML model systematically outperforms other models**

Benchmark for Anomaly Detection

	E1	E2	E3
CART	0.993	0.873	0.978
Naïve Bayes	0.956	0.861	0.959
MLP	0.997	0.944	0.996
SVM	0.996	0.944	0.995
kNN	0.995	0.859	0.963
Random Forest	0.999	0.876	0.993
Bagging Tree	0.996	0.885	0.983
AdaBoost Tree	0.998	0.945	0.995
logreg	0.999	0.952	0.996
MVaccuracy	0.999	0.948	0.996
MVuniform	0.999	0.945	0.996
CART	0.997	0.924	0.994
GML	0.999	0.963	0.997

- Similar observations are drawn from the AD benchmark
- Anomalies E1 and E3 are easier to detect, and base learners provide already very accurate results
- E2 anomalies are stealthier (long duration, small volume), and GML provides a clear performance increase

Full Benchmark in multiple NMA Problems

	AD	NS	QoE-P	QoE-M	PPC	ALL
CART	0.948 (3.9%)	0.872 (11.1%)	0.956 (3.7%)	0.952 (4.4%)	0.966 (1.9%)	0.935 (5.4%)
Naïve Bayes	0.925 (6.2%)	0.826 (15.8%)	0.752 (24.2%)	0.754 (24.3%)	0.924 (6.3%)	0.819 (17.1%)
MLP	0.979 (0.7%)	0.970 (1.1%)	0.887 (10.7%)	0.882 (11.5%)	0.964 (2.1%)	0.929 (6.0%)
SVM	0.978 (0.8%)	0.955 (2.6%)	0.786 (20.8%)	0.790 (20.7 %)	0.886 (10.1%)	0.869 (12.1%)
kNN	0.939 (4.8%)	0.892 (9.1%)	0.788 (20.6%)	0.793 (20.4%)	0.920 (6.7%)	0.854 (13.6%)
Random Forest	0.956 (3.1%)	0.903 (7.9%)	0.983 (1%)	0.978 (1.8%)	0.969 (1.6%)	0.957 (3.2 %)
Bagging Tree	0.954 (3.2%)	0.895 (8.7 %)	0.976 (1.7%)	0.975 (2.1%)	0.973 (1.3%)	0.953 (3.6%)
AdaBoost Tree	0.979 (0.7%)	0.930 (5.2%)	0.982 (1.1%)	0.984 (1.2%)	0.875 (11.2%)	0.954 (3.5 %)
logreg	0.982 (0.4%)	0.960 (2.1%)	0.981 (1.1%)	0.978 (1.9%)	0.941 (4.5%)	0.970 (1.9%)
MVaccuracy	0.981 (0.5%)	0.974 (0.7%)	0.984 (0.9%)	0.991 (0.6%)	0.972 (1.3%)	0.981 (0.8%)
MVuniform	0.980 (0.6%)	0.973 (0.8%)	0.980 (1.3%)	0.984 (1.2%)	0.980 (0.5%)	0.979 (1.0%)
CART	0.971 (1.5%)	0.946 (3.6%)	0.956 (3.6%)	0.960 (3.6%)	0.968 (1.8%)	0.959 (3.0%)
GML	0.986	0.981	0.993	0.996	0.985	0.989

- GML does not only outperforms the most accurate first level learners...
- ...but also outperforms other ensemble-learning models based on bagging, boosting and stacking
- The GML model performs the best for all scenarios, suggesting a potentially good approach to go for by default in similar NMA problems

Organization of the Talk Dealing with Some of the Challenges in AI4NETS

- Deep Learning for Malware Detection Avoid Feature Engineering
- Generative Models for Anomaly Detection Avoid Traffic Modeling
- Explainable Artificial Intelligence (XAI) Interpret Model Decisions
- Super Learning for Network Security Avoid Model Decision
- Adaptive/Stream Learning for NetSec *Deal with Concept Drifts*
- Reinforced Active Learning *Deal with Lack of Ground Truth*

Adaptive or Stream-based Learning (credits to Albert Bifet)

- Let us go a bit deeper into the problem of concept drift in supervised learning
- And overview the main principles how to deal with concept drift

- Concept Drift (non-stationarity): the statistical properties defining the relationships between input data and output target change over time.
- This causes problems because the predictions become less accurate as time passes.

Concept Drift: a Trap for (off-line) Supervised Learning


```
training: learn a
mapping function
Y<sub>training</sub> = M (X<sub>training</sub>)
```

application: use learnt
function/model on
newly, unseen data
Y_{new} = M (X_{new})

...but what happens if/when X_{new} is derived from a different distribution $d' \neq d$?

(off-line) Supervised Learning under Concept Drifts

- Detection of network attacks in MAWI WIDE network
- 10-fold cross-validation, high detection performance with low FPR...

Figure 1: Detection performance (ROC curves) achieved by the different models for detection of network attacks.

(off-line) Supervised Learning under Concept Drifts

- ...accuracy remains high for the first 3 weeks (training on first 3 days)...
- ...but models accuracy start to rapidly degrade over time

Figure 2: Performance drift for the off-line trained models along time. Training is done on the first 3 days of data.

Learning in an Online Setting – Stream/Adaptive Learning

- In an online setting, data arrives continuously, as a stream of samples
- Adaptive learning consists of learning from continuous data in efficient way, using a limited amount of memory
- Adaptive learning approaches work in a limited amount of time

Adaptation Strategies

- Two main approaches for adaptation:
 - re-train the model by carefully selecting the best data
 - adjust the previously learnt model incrementally

Desired Properties of a System to Handle Concept Drift

- Adapt fast to concept drift
- Robust to noise, but adaptive to changes
- Capable to deal with reoccurring contexts (avoid catastrophic forgetting)
- Use limited resources in terms of time and memory

What types of Concept Drift can we get?

The change to the data could take any form

- It is conceptually easier to consider the case where there is some temporal consistency to the change
- Incremental drift: one could assume that data collected within a specific time period show the same relationship and that this changes smoothly over time

A taxonomy of approaches (A. Bifet, J. Gama)

``、strategy memory``、

> reactive forgetting single model

Fixed-size Training Window

tra	in	pre dict		time
				time
<u> </u>			_	time
l				time

Variable Training Window, Change Detection and Cut

Adaptation Strategies to Concept Drift

Dynamic Ensemble Learning

Adaptation Strategies to Concept Drift

Contextual (Meta) Approaches

set 1 \rightarrow model 1

set 3 → model 3

partition training data to build multiple models

Contextual (Meta) Approaches

set 1 \rightarrow model 1

set 2 \rightarrow model 2

set 3 \rightarrow model 3

find which partition better represents the new instance, and use the corresponding model

Adaptation Strategies to Concept Drift

A taxonomy of approaches (A. Bifet, J. Gama)		
、、strateg	SY	
memory	triggering	evolving
single model	 detectors detect a change and discard the past variable windows 	forgetting forget old data re-train at fixed rate fixed windows instance weighting
ensemble	contextual • build many models • switch among them based on input • meta-learning	dynamic ensemble • build many models • dynamically combine • dynamic combination rules

Adaptation Strategies to Concept Drift

Adaptive/Stream Learning Models for NetSec

- Implement an adaptive approach using single models and a changedetection algorithm to detect concept drifts
- Take ADWIN (Adaptive WINdowing) to detect changes
- ADWIN automatically grows the learning window when no change is apparent, and shrinks it when concept drifts are detected
- Properties: automatically adjusts its window size to the optimum balance point between reaction time and small variance

Adaptive WINdowing algorithm

The idea of ADWIN is straightforward:

- it keeps a sliding window W with the most recently observed data
- whenever two *large enough* sub-windows of W exhibit *distinct enough* averages, the older portion of the window is dropped.

- 1: initialize window W
- 2: for each t > 0 do
- 3: $W \leftarrow W \cup \{x_t\}$ (add x_t to the head of W)
- 4: **repeat**drop instances from the tail of W
- 5: **until** $\|\hat{\mu}_{W_0} \hat{\mu}_{W_1}\| \ge \epsilon$ for every split of $W = W_0 \cdot W_1$
- 6: return $\hat{\mu}_W$
- 7: end for

where $\hat{\mu}_{W_0}$ and $\hat{\mu}_{W_1}$ are the averages of the instances in W_0 and W_1 respectively.

Adaptive/Stream Learning Models for NetSec

Adaptive learning algorithms trained on labelled data, using ADWIN

Stream-based Learning Models Performance

- Multiple stream machine learning models, using ADWIN
- Detection accuracy, normalized to batch-based algorithms performance

Detected changes are marked with dashed lines.

Stream-based Learning Models Performance

- Multiple stream machine learning models, using *fixed windowing*
- AUC (ROC curve), normalized to batch-based algorithms performance
- Different window sizes tested

Organization of the Talk Dealing with Some of the Challenges in AI4NETS

- Deep Learning for Malware Detection Avoid Feature Engineering
- Generative Models for Anomaly Detection Avoid Traffic Modeling
- Explainable Artificial Intelligence (XAI) Interpret Model Decisions
- Super Learning for Network Security Avoid Model Decision
- Adaptive/Stream Learning for NetSec *Deal with Concept Drifts*
- (Reinforced) Active Learning *Deal with Lack of Ground Truth*

-and in the case of anomaly detection, it has to deal with heavily unbalanced classes and concept drifts
- Solution: semi-supervised learning, relying on human labeling (through AL) to tailor and improve detection performance over time

What is it and Why Active Learning?

- Descrive
 Select most instances
 Query instance

 Learner
 Observe
 Instances
- Lets assume we want to *build a "small" labeled dataset* for semisupervised learning → *e.g., by manually labeling some samples*
- How to cherry-pick the best samples to label? \rightarrow Active Learning (AL)
- The *learning algorithm itself chooses* the data it wants to learn from
- Using AL, learning models can perform as good as (or better than) traditional methods with substantially less data for training

General AL step-by-step

- Bootstrapping: train an initial model M from a small labeled training dataset D₀
- Sample selection: apply M to unlabeled data, and select best samples to label, based on a query strategy (e.g., model uncertainty) → D_i
- 3. Oracle labelling & retraining: label selected samples and retrain model M with {D₀ + D_i}

Stopping criteria: query budget, model performance, number iterations, YNI...

ALADDIN – Building Blocks

- Detection Model → RCET 100 (Random Committee of 100 Extremely Randomized Trees), or simple RF100 model
- AL Sampling Pool based, using *uncertainty sampling* in particular keep the *least confident samples*, with a predefined querying budget
- Required ML model output: per-class prediction probabilities (could also plug-in other relevant info, e.g., anomaly scores)
 - mean terminal leaf probability across all trees
 - fraction of trees voting either class
 - softmax activation layer
- Labeled training set (bootstrap model)
- Unlabeled pool (AL operation)
- Testing set

Improving Stream-based Active Learning by Reinforcement (RAL)

- How do we deal with the limited amount of labeled data?
- Active Learning (AL): aims at labelling only the most informative samples
- AL can be applied to the streaming scenario, to complement previous approaches and reduce the amount of labeled data

- AL bases its decisions based EXCLUSUVELY on model uncertainty
- RAL permits to additionally learn in a feedback loop, based on the effectiveness of the requested labels
- Reward in case asking oracle was informative (models would have predicted wrong label)

FEEDBACK

Penalty otherwise

RAL Principles and Components

- RAL is based on an ensemble of models
- RAL makes use of contextual-bandit algorithms (EXP4) to tune the decision powers of the different models depending on their behavior
- RAL uses a ε-greedy approach to handle concept drift and improve the exploration/exploitation trade-off

RAL Principles and Components

- n
- The querying decision (ask or not for a label) is taken
 based on model prediction uncertainty and a threshold
- Each algorithm in the ensemble (committee) gives its advice, based on its prediction uncertainty
- RAL takes into account the decisions of the members + their decision power
- Obtained feedback influences the querying threshold:
 - In case of penalty, the threshold decreases.....otherwise, it slightly increases

RAL Evaluation vs. State of the Art

- RAL vs RVU (Randomized Variable Uncertainty) and simple random sampling (RS)
- Evaluation on data extracted from MAWILab in the wild network security
- We divide each dataset into three consecutive parts:
 - Initial training set (variable size)
 - Validation set (last 30%), to evaluate the classifiers
 - Streaming set (remaining part of the dataset), for picking samples to learn from

RAL Evaluation vs. State of the Art – Prediction Accuracy

RAL Evaluation vs. State of the Art – Querying Cost

So What's Next?

- We're still far from making AI immediately applicable
 - Limitations of learning process, data, models
 - Lack of generalization
 - Continual learning challenges catastrophic forgetting and transfer
 - Lack of real knowledge generation building simple mappings is *easy*
 - Portability of models to real deployments plug & play?

• *Effective Machine Learning* – a mix of interesting challenges:

- Transfer learning
- Explainable AI (XAI)
- Multi-task learning
- Meta learning and hierarchical learning
- Graph Neural Networks
- And back right to the start: the successful application of AI to network measurement problems is still on an early stage

Thanks

Dr. Pedro Casas Data Science & Artificial Intelligence AIT Austrian Institute of Technology @Vienna

> pedro.casas@ait.ac.at http://pcasas.info