Learning with Graphs
A Gentle Introduction to Graph Neural Networks

Dr. Pedro CASAS
AIT Austrian Institute of Technology @Vienna
Data Science & Al

10th TMA PhD School

June 27, 2022 AI4ANETS

[ based on ML with Graphs, Jure Leskovec, Stanford University]




Learning with Graphs — Why Graphs?

= Graphs are all around us GBAPHS EVERYWHERE

memegenerator.net

= Real world objects are often defined in terms of their connections to other things

= A set of objects, and the connections between them, are naturally expressed as a graph

computer networks social networks transport networks



Learning with Graphs — Why Graphs? Gﬁﬁng!'!\s'

Graphs are all around us GI{AI»"!I’I'S‘E\IEIIYWIIEH

memegenerator.net

Real world objects are often defined in terms of their connections to other things

A set of objects, and the connections between them, are naturally expressed as a graph

Graphs are a general language for describing and analyzing entities with relations/interactions

molecules networks of neurons transaction graphs



Learning with Graphs — How do we Use them? o ’ )
= Complex domains have a rich relational structure... nES — O \

= _..which can be represented as a relational graph

= Empirical results — by explicitly modeling relationships we achieve better performance

= Deep Learning in Graphs — Graph Neural comvalutons e dropout convalutions
Networks (GNNs) - ...
\ function
= Unique ability to learn and generalize over
graph-structured data... >
= ..enabled groundbreaking applications in / ———
. Predictions: Node labels,
fields where data are represented as graphs New links, Generated
Input: Network graphs and subgraphs




GNNs are one of the Hottest Sub-fields in ML Today

= About 4% of ICLR 2022 submitted papers using GNNs

ICLR 2022 Submission Top 50 Keywords

reinforcement |learnin
eproceniaEch [t ICLR Keyword Growth 2018-2020
m— e [
AT ont g§ hgraph neural network

neural network
transfer learning adversarial robustness
contrastive learning
computer visjon
meta learning
continual learning
interpretabi|it

machine Iearn nI
eneratw? dels
dversaria tralnlng
adversarla robustness
opt|m|zat jon
natural language process ng
deep remforcement Iearn

robustness

t
knowledgeoohs(tal?l ng transformer
domain ad on

trags ormers
unsuperwse earmn

l___'
Meta-learning e
=
OL% imal trans —__

MEn iR neural architecture search
generative a versa Inetwor
mage ¢ a55|f|cat|on

vision tra nsformer

var| tional inference

erential privacy

airness

semj supervised |earn|n%

self-supervised learning 2=

multi agent reinforcement |learnin
9 g act?v% Ieatrnm bert
eep neur etwor
FL),I % tasﬁ< Pearn?n

2018
mm 2019

— s 2020

nlp

series
model based remforcemenn"learnlnlg

out of distribution etectloﬁ
convolutional neural network
uncertainty estimatjon
offline reinforcement learning
classification

continual learning

100 125 150 175 200

o
N
(9]
(9]
o
~
(9]



GNNs in a Nutshell — Classic Graph ML Tasks

= Graph Neural Networks (GNNs) are a class of deep learning methods
designed to perform inference on data described by graphs SN
= GNNs are neural networks that can be directly applied to graphs to tackle standard
types of tasks at the node-level, edge-level, and graph-level

"= We define a graph G(V,E)
= Vis the set of n nodes or vertices Node level

= Eisthe set of links or edges

Graph-level <—

= Adjacency matrix A with dimensions (n x n) 11, Community

prediction, i
: (subgraph)
= Matrix of node features X € R xm) Graph level
generation :
* Many types of graphs: directed, undirected, Edge-level

bipartite, weighted, heterogeneous, etc.



GNNs in a Nutshell — Examples of Tasks on Graphs

= Node Classification
= predict a type (label) of a given node, by looking at the labels of the neighbors
= usually trained in a semi-supervised way, with only a part of the graph being labeled

= E.g., predict amino—acid sequences (e.g., DeepMind’s AlphaFold) GNN

" Link Prediction
= understand the relationship between nodes in graphs
= predict whether there is a connection between two nodes
= E.g., infer social interactions in social networks, recommendation systems

= Graph Classification and Prediction
= classify the complete graph into different categories
= similar problems to image classification

= E.g., molecule property prediction (protein is an enzyme or not), social analysis, Travel Time
Estimation (e.g., Google Maps)

" Graph Clustering
= detect if nodes form a certain community
= vertex clustering, graph clustering (similarity between graphs)
= E.g., identification of communities, anomaly detection



GNNs in a Nutshell — Node Embeddings

= How do we learn on graphs? = (deep) embeddings

* The notion of node embeddings: map nodes to d-dimensional embeddings such that
similar nodes in the network are embedded close together

|
node representation |
Learn a neural network I
u . y ” ;
fru—-R !
d |
R :
Feature representation, !
embedding

= The exercise is therefore how to learn these mappingfunctionsf ? Embeddings should
keep the structure of the graph, and incorporate nodes’ neighboring properties



Why not Traditional Deep Learning?

= Deep Learning is designed to specific,

structured, simple types of graphs: VS
grids and sequences )

Text
= Graphs have no spatial locality as grids

_ , Networks Images
= No fixed node ordering as sequences

Patterns of Local St it
Contrast g

‘%
4

v 2
[z

b
e
P

A,
2
@
AN
)
)

SEERZ D
}/’1 &
11
ot | N7
XK

Y4
@

A
¢
4

Input Layer

B &

2 ,;ﬁ%ﬁﬁ a [
& ® ®

Text/Speech




Generalizing Convolutions to Graphs

= CNN on images: convolution takes a little
sub-patch of the image around a pixel
(node) and aggregates information from

its neighbors and itself

= The goal is to generalize convolutions
beyond simple lattices...

= ..but as we said, there is no fixed notion of
locality or sliding window on the graph

And graphs are permutation invariant!

(ordering 1] (ordering 2|

Convolutions Subsampling Convolutions Subsampling Fully connected

= Graphs do not have a canonical order of
the nodes

= Graph and node representations should be
the same for ordering 1 and ordering 2



_______________

Building the Embeddings — the Encoding Function

Input Layer
Output Layer

= Recap: GNNs basically consists in encoding the graph in the form of vectors and then
using this encoding to make predictions

= Encoder: take a graph and learn an embedding for every node of the graph

= Decoder: use the learned embeddings and make predictions

= Training: feed embeddings into any loss function and run stochastic gradient descent to train weights

Goal: similarity(u,v) ~ z)z, = let u and v be two nodes on the graph
Neod :[}define' = x,and x, their corresponding node feature vectors
....................................... = the encoding function ENC(u) y ENC(v) convert the

feature vectors to z, and z,, in the embedding space

= the decoding function is simply the similarity
between nodes: similarity(u,v) = z7 . z,,

0
-
.
.
K
s
.........
..........................................

d-dimensional ™ challenge = come up with the encoder function

Input network _
embedding space



Graph Convolutional Networks (GCNs)

= For simplicity, let us consider a simple type of GNN — Graph Convolutional Network (GCN)

= We are looking for an encoder function which should be capable of:

= Integrating locality information (local graph neighborhoods)
= Aggregating information

= Stacking multiple layers (computation) — deep graph encoders

= Locality information = the neighborhood of a node
defines a computation graph (directed graph where
nodes correspond to mathematical operations — acts
as a functional description of a computation)

= Key idea = generate node embeddings based on
local network neighborhoods.



Graph Convolutional Networks (GCNs)

= Key idea = generate node embeddings based on local network neighborhoods (k hops),
using computation graphs

TARGET NODE
x oA
Pl R [ - i
A < .*. """" =
F
@
a
k hops for input graph computation graph
nearest neighbors embedding for node A for node A

= Now that we have the local information coded in a graph structure, we do data aggregation



Graph Convolutional Networks (GCNs)

= Every node defines a computation graph based on its neighborhood




Neighborhood Aggregation with Deep Encoders

= Nodes aggregate information from their neighbors and apply
neural networks

(1) Basic aggregation: average information from neighbors ~ __-
[ What do we put in the boxes?l

\
\
\

\

(2) Apply neural network . < @




Deep Encoders — Many Layers

= Model can be of arbitrary depth — depends on the k hops for NNs

= Nodes (v) have embeddings at each layer k 2> h(k)

v

. . o Layer-O
Layer — 0 embedding of node D is its input feature, X,, Layer-1 D XA
= Layer — k embedding gets information . l @ X(O
from nodes that are k hops away Layer—2 S X A
o @ X B

. . Z) @ € | g .
Example: 4 @ « : .".v ..... -® X E
= x,and X are the inputs at Layer-0 ® Xp
= Both feature vectors are aggregated and passed --.,,‘.‘.' _______

through an activation function in Layer-1

= And then passed to the next Layer-2



_______________

Formulation of the Deep Encoder

0 initial layer 0 embeddings are equal
h! =x, -
v X’U to node features

Input Layer

Output Layer

________________

hk—l -
h =0 | W, §: u B.h*~' |, Vk>0
[N (v)
k™ Ilyer ’U,EN(’U) T
e;nbedding ? _ previous layer [k E {1’ *°’ K}]
o non-linearity ave?rgee\:’i(:)fur;nelfyhet)rors embedding of v
last embeddings
Zy = hvas total number of layers
- . Layer-O
= |nitial Layer-0 embeddings are equal to node features Layer-1 @ X4
= N(v)is the set of neighboring nodes (embeddings) .® @ X0
. o . Layer-2 .~ ® Xy
= Non-linearity (activation function) O - e.g., RelLU e . ® XpB
) ) A . <« : ................. .4‘.3 . XE
= Matrices W, and B, are the trainable weights ‘® Xp

After K layers of aggregation, we obtain the embedding for node v 2> z,, .‘. .................... ® X4



Training the Model to Generate Embeddings

= To train the model (parameters), we need to define a loss function on the embeddings
= We can feed the embeddings into any loss function and run SGD to train the weights

= Training can be supervised or unsupervised

" Supervised: train model for supervised task, e.g., node classification, using node labels y

(m@in 1;(;)? f(zv))}---—» node embeddings

~
T~

~
~,

e.g., L2 norm if y are real numbers, Cross Entropy (CE) for categorical y

= Unsupervised = use graph structure as supervision: similar nodes have similar embeddings

= Unsupervised loss function can be a loss based on node proximity in the graph

L= CE(Yy v, DEC(2y, 7)) |- === -~ --- » decoder (e.g., inner product)
A » node similarity function




GNN Design — Just the Tip of the Iceberg

> i
-
S

= Many decisions and options to chose from when designing a GNN

2 I 1. Define the graph structure

LY
Skip .
|

2. Define the graph type and scale

R S— ‘ 3. Design the loss function for the planned task
J'h' Sampling [Conv/Recurrent f Pooling :
Operator Operator Operator . .
\ (PR . basenses /' 4. Decide Graph Computational components
Input BT Jotags Output
- ™ ~ g / - \
Node Loss Function
Embedding
|:> ENN - gNL\Ir - e = I:> Edge :> Training Setting Task
dyer Y Embedding * Supervised * Node-level
* Semi-supervised * Edge-level
Graph * Unsupervised * Graph-level
~ d ~ - Embedding \ /
1. Find graph structure. 4. Build model using computational modules. 3. Design loss function.

2. Specify graph type and scale.



GNN Design — Computational Components

Spectral
- pmm———————
: Spectral o= ========——— Network
DGCN
8 f Convolution R
\ Operator o o : Neural FPs
________ ! Basic '
GraphSAGE
T
' spatial 1
__________ & - - - -
! Attentional re--- GAT
Propagation = e
Module | Framework }--- MoNet
L N T T T LY T
fmmm———
(TToTmmes \ ! Convergence r=-- GNN
,  Recurrent + ] TTTTTTTIoOS !
' Dperator
L D P Ry ——- .
' Gate Foos GGNN
e
] ip e e e e e e
! Connection 0 JKN
e e e mm—-—-
o pmmmmm e i
! Node r-- GraphSAGE VR-GCN PinSAGE
__________ 4
Sampling B |
Madule ! Layer == FastGCN LADIES
__________ o’
e ————
L \ Subgraph - ClusterGCN GraphSAINT
Direct - --smpie SetZset SortPooling
L Pooling
Poaling
Module
T — Coarsening ECC DifTPaol
! Hierarchical
EigenPooling SAGPool

ChebMNet

GWNN

DCNN

GAAN

MPMNN

GraphSEN

Tree LSTM

Highway
GCN

gPool

GCN

PATCHY-
SAN

Graph <
Type and Scale

AGCN

LGCN

- —
T
[}
-
m
=
o
m
[}
=
m

__________

" Propagation modules

=  Sampling modules

= Pooling modules

= Variations depending on type of graph

N based )

__________

f
1 Relational F---
\

__________

__________

mGCN

DCRNN

DGNN

HGNN

SGCN

APPNP

GTN

HetGNN

R-GCN

STGCN

EvolveGCN

ProPPR

-
- ~~

MAGNN

Structural-
RNN

-

-
- ~~

ST-GCN

-
S



-
- S~

GNN Design — Computational Components

-
-
S

T [~ T = oo = Propagation modules
---------- DGON GWNN .
P = Sampling modules
‘_fo?r:i_lil;r__} fmmmmmm e, Neural FPs DCNN P""gf:“" LGCN
= Pooling modules
GraphSAGE
HEESTINS B
/ | Attentional _r--+  GAT GAAN u \/;._Lia_t_i_a_n;dg%endmg on type of gra ph
Graphs are the new frontier of deep learning
ir_ _ff;egu_fr_f_nt_ R -— GTN MAGNN
ST Drive the development of neural networks | "™
3 Gonmection 1" . R-GCN
I " that are much more broadly applicable ,
Node r-- O
) ) T MJ
Modue |7} | layer  F--  FastGON LADIES [mmmmmm——- 1 DCRNN STGCN Str;i‘gal' ST-GCN
__________ Dynamic rF==-==-=-------=----
! subgraph -~ ClusterGON GraphSAINT A ‘ DGNN EvolveGCN
:t:: _5,_;5_: L — S;:I];:; Set2set SortPooling ir— ':i;l;e_".;";l;f: — E' """"""""" HGNN
pooling [ | et
Modwe | . . { Coarsening ECC DifTPaol gPool :r Signed I EEREEETEE PP EEEEY SGCN
Hierarchical ...
EigenPooling SAGPool :f_ Ija_rg_e_;r-a[_:i; " PoosTosssmssoeed APPNP ProPPR




GNN vs CNN vs Transformers

= Recap: CNNs can be seen as a special GNN with fixed neighbor size and ordering:

= The size of the filter is pre-defined for a CNN
= The advantage of GNN is it processes arbitrary graphs
= CNNs are NOT permutation equivariant = switching the order of pixels will
leads to different outputs
" Transformers: the most popular architecture to handle sequential data (text)

= Fully rely on self-attention: every token (word) attends to all the other tokens
via matrix calculation

text complete graph ]




GNN vs CNN vs Transformers

= Recap: CNNs can be seen as a special GNN with fixed neighbor size and ordering:

= The size of the filter is pre-defined for a CNN

= The advantage of GNN is it processes arbitrary graphs

= CNNs are NOT permutation equivariant = switching the order of pixels will
leads to difff‘“"‘ EE— ~N

Transformer layer can be seen as a

special GNN that runs on a fully-connected t)

= Fullyrelyo ‘“word” graph fokens
via matrix Ca. %

text complete graph ]

* Transformers:




GNNet 1“ Graph Neural Networkmg Workshop @CoNEX T 2022

i AR .Y
s ;|
&/ - - )™ :
GON EXTEID PP e

7 ’e’\ ', \\\“\“m\mnmmmummmm‘ 111111]

= Networks are graphs ©...the success of GNNs in recent years creates a great opportunity for a wide
range of networking problems

= GNNet targets the application of Graph Neural Network (GNN) technology to networking problems
= Help building a strong community among those of us interested in what GNN can bring to networking

" |nclude a Special Session featuring the best solutions from the BNN-UBP GNNet challenge 2022

Albert Cabellos Pere Barlet-Ros Franco Scarselli Pedro Casas



AI I AUSTRIAN INSTITUTE
OF TECHNOLOGY

TOMORROW TODAY

Thanks

Dr. Pedro Casas
Data Science & Artificial Intelligence
AIT Austrian Institute of Technology @Vienna

pedro.casas@ait.ac.at

S http://pcasas.info



