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Learning with Graphs – Why Graphs?

▪ Graphs are all around us

▪ Real world objects are often defined in terms of their connections to other things

▪ A set of objects, and the connections between them, are naturally expressed as a graph

computer networks social networks transport networks



Learning with Graphs – Why Graphs?

▪ Graphs are all around us

▪ Real world objects are often defined in terms of their connections to other things

▪ A set of objects, and the connections between them, are naturally expressed as a graph

▪ Graphs are a general language for describing and analyzing entities with relations/interactions

molecules transaction graphsnetworks of neurons



Learning with Graphs – How do we Use them?

▪ Complex domains have a rich relational structure…

▪ …which can be represented as a relational graph 

▪ Empirical results – by explicitly modeling relationships we achieve better performance

▪ Deep Learning in Graphs – Graph Neural 
Networks (GNNs)

▪ Unique ability to learn and generalize over 
graph-structured data…

▪ …enabled groundbreaking applications in 
fields where data are represented as graphs



GNNs are one of the Hottest Sub-fields in ML Today

▪ About 4% of ICLR 2022 submitted papers using GNNs



GNNs in a Nutshell – Classic Graph ML Tasks

▪ Graph Neural Networks (GNNs) are a class of deep learning methods            
designed to perform inference on data described by graphs

▪ GNNs are neural networks that can be directly applied to graphs to tackle standard 
types of tasks at the node-level, edge-level, and graph-level

▪ We define a graph G(V,E)

▪ V is the set of n nodes or vertices

▪ E is the set of links or edges

▪ Adjacency matrix A with dimensions (n x n)

▪ Matrix of node features 𝑿 ∈ ℝ(n x m)

▪ Many types of graphs: directed, undirected, 
bipartite, weighted, heterogeneous, etc.



GNNs in a Nutshell – Examples of Tasks on Graphs

▪ Node Classification
▪ predict a type (label) of a given node, by looking at the labels of the neighbors
▪ usually trained in a semi-supervised way, with only a part of the graph being labeled
▪ E.g., predict amino–acid sequences (e.g., DeepMind’s AlphaFold)

▪ Link Prediction
▪ understand the relationship between nodes in graphs
▪ predict whether there is a connection between two nodes
▪ E.g., infer social interactions in social networks, recommendation systems

▪ Graph Classification and Prediction
▪ classify the complete graph into different categories
▪ similar problems to image classification
▪ E.g., molecule property prediction (protein is an enzyme or not), social analysis, Travel Time 

Estimation (e.g., Google Maps)

▪ Graph Clustering
▪ detect if nodes form a certain community 
▪ vertex clustering, graph clustering (similarity between graphs)
▪ E.g., identification of communities, anomaly detection



GNNs in a Nutshell – Node Embeddings

▪ How do we learn on graphs? → (deep) embeddings  

▪ The notion of node embeddings: map nodes to d-dimensional embeddings such that 
similar nodes in the network are embedded close together

▪ The exercise is therefore how to learn these mapping functions f ? Embeddings should 

keep the structure of the graph, and incorporate nodes’ neighboring properties



Why not Traditional Deep Learning?

▪ Deep Learning is designed to specific, 
structured, simple types of graphs: 
grids and sequences

▪ Graphs have no spatial locality as grids

▪ No fixed node ordering as sequences



Generalizing Convolutions to Graphs

▪ CNN on images: convolution takes a little 
sub-patch of the image around a pixel 
(node) and aggregates information from 
its neighbors and itself

▪ The goal is to generalize convolutions 
beyond simple lattices…

▪ …but as we said, there is no fixed notion of 
locality or sliding window on the graph

▪ And graphs are permutation invariant!

▪ Graphs do not have a canonical order of 
the nodes

▪ Graph and node representations should be 
the same for ordering 1 and ordering 2

ordering 1

=
ordering 2



Building the Embeddings – the Encoding Function

▪ Recap: GNNs basically consists in encoding the graph in the form of vectors and then                        
using this encoding to make predictions

▪ Encoder: take a graph and learn an embedding for every node of the graph

▪ Decoder: use the learned embeddings and make predictions

▪ Training: feed embeddings into any loss function and run stochastic gradient descent to train weights

▪ let u and v be two nodes on the graph

▪ xu and xv their corresponding node feature vectors 

▪ the encoding function ENC(u) y ENC(v) convert the 
feature vectors to zu and zv in the embedding space

▪ the decoding function is simply the similarity 

between nodes: similarity(u, v) ≈ zT
v . zu

▪ challenge→ come up with the encoder function



▪ For simplicity, let us consider a simple type of GNN – Graph Convolutional Network (GCN)

▪ We are looking for an encoder function which should be capable of:

▪ Integrating locality information (local graph neighborhoods)

▪ Aggregating information

▪ Stacking multiple layers (computation) – deep graph encoders

Graph Convolutional Networks (GCNs)

▪ Locality information → the neighborhood of a node 
defines a computation graph (directed graph where 
nodes correspond to mathematical operations – acts 
as a functional description of a computation)

▪ Key idea→ generate node embeddings based on 
local network neighborhoods.

Computation Graph



Graph Convolutional Networks (GCNs)

▪ Key idea→ generate node embeddings based on local network neighborhoods (k hops),    
using computation graphs

▪ Now that we have the local information coded in a graph structure, we do data aggregation

k hops for 

nearest neighbors

input graph

embedding for node A

computation graph 

for node A



▪ Every node defines a computation graph based on its neighborhood 

Graph Convolutional Networks (GCNs)



Neighborhood Aggregation with Deep Encoders

What do we put in the boxes?

1
2

▪ Nodes aggregate information from their neighbors and apply                                
neural networks

(1) Basic aggregation: average information from neighbors

(2) Apply neural network



Deep Encoders – Many Layers

▪ Model can be of arbitrary depth – depends on the 𝑘 hops for NNs

▪ Nodes (𝑣) have embeddings at each layer 𝑘→

▪ Layer – 0 embedding of node 𝑣 is its input feature, 𝑥𝑣

▪ Layer – 𝑘 embedding gets information 
from nodes that are 𝑘 hops away

▪ Example: 

▪ 𝑥A and 𝑥C are the inputs at Layer-0

▪ Both feature vectors are aggregated and passed 
through an activation function in Layer-1

▪ And then passed to the next Layer-2 



Formulation of the Deep Encoder

𝑘 {1, .., K}

total number of layers

▪ Initial Layer-0 embeddings are equal to node features

▪ N(𝑣) is the set of neighboring nodes (embeddings)

▪ Non-linearity (activation function)      → e.g., ReLU

▪ Matrices W𝑘 and B𝑘 are the trainable weights

▪ After K layers of aggregation, we obtain the embedding for node 𝑣→ z𝑣



▪ To train the model (parameters), we need to define a loss function on the embeddings

▪ We can feed the embeddings into any loss function and run SGD to train the weights

▪ Training can be supervised or unsupervised

▪ Supervised: train model for supervised task, e.g., node classification, using node labels y

▪ Unsupervised→ use graph structure as supervision: similar nodes have similar embeddings

▪ Unsupervised loss function can be a loss based on node proximity in the graph

Training the Model to Generate Embeddings 

e.g., L2 norm if y are real numbers, Cross Entropy (CE) for categorical y

node embeddings

node similarity function
decoder (e.g., inner product)



GNN Design – Just the Tip of the Iceberg

▪ Many decisions and options to chose from when designing a GNN

1. Define the graph structure

2. Define the graph type and scale

3. Design the loss function for the planned task

4. Decide Graph Computational components 



▪ Propagation modules

▪ Sampling modules

▪ Pooling modules

▪ Variations depending on type of graph

GNN Design – Computational Components



▪ Propagation modules

▪ Sampling modules

▪ Pooling modules

▪ Variations depending on type of graph

GNN Design – Computational Components

Graphs are the new frontier of deep learning

=
Drive the development of neural networks 

that are much more broadly applicable



GNN vs CNN vs Transformers

▪ Recap: CNNs can be seen as a special GNN with fixed neighbor size and ordering:

▪ The size of the filter is pre-defined for a CNN

▪ The advantage of GNN is it processes arbitrary graphs

▪ CNNs are NOT permutation equivariant → switching the order of pixels will 
leads to different outputs

▪ Transformers: the most popular architecture to handle sequential data (text)

▪ Fully rely on self-attention: every token (word) attends to all the other tokens 
via matrix calculation

isnamemy Pedro

text
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complete graph



GNN vs CNN vs Transformers

▪ Recap: CNNs can be seen as a special GNN with fixed neighbor size and ordering:

▪ The size of the filter is pre-defined for a CNN

▪ The advantage of GNN is it processes arbitrary graphs

▪ CNNs are NOT permutation equivariant → switching the order of pixels will 
leads to different outputs

▪ Transformers: the most popular architecture to handle sequential data (text)

▪ Fully rely on self-attention: every token (word) attends to all the other tokens 
via matrix calculation
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complete graph

Transformer layer can be seen as a
special GNN that runs on a fully-connected

“word” graph



▪ Networks are graphs ☺…the success of GNNs in recent years creates a great opportunity for a wide 
range of networking problems

▪ GNNet targets the application of Graph Neural Network (GNN) technology to networking problems

▪ Help building a strong community among those of us interested in what GNN can bring to networking

▪ Include a Special Session featuring the best solutions from the BNN-UBP GNNet challenge 2022

GNNet – 1st Graph Neural Networking Workshop @CoNEXT 2022

Albert Cabellos Pere Barlet-Ros Franco Scarselli Pedro Casas
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