
based on ML with Graphs, Jure Leskovec, Stanford University

Learning with Graphs
A Gentle Introduction to Graph Neural Networks

Dr. Pedro CASAS

AIT Austrian Institute of Technology @Vienna

Data Science & AI

10th TMA PhD School

June 27, 2022 AI4NETS

Learning with Graphs – Why Graphs?

▪ Graphs are all around us

▪ Real world objects are often defined in terms of their connections to other things

▪ A set of objects, and the connections between them, are naturally expressed as a graph

computer networks social networks transport networks

Learning with Graphs – Why Graphs?

▪ Graphs are all around us

▪ Real world objects are often defined in terms of their connections to other things

▪ A set of objects, and the connections between them, are naturally expressed as a graph

▪ Graphs are a general language for describing and analyzing entities with relations/interactions

molecules transaction graphsnetworks of neurons

Learning with Graphs – How do we Use them?

▪ Complex domains have a rich relational structure…

▪ …which can be represented as a relational graph

▪ Empirical results – by explicitly modeling relationships we achieve better performance

▪ Deep Learning in Graphs – Graph Neural
Networks (GNNs)

▪ Unique ability to learn and generalize over
graph-structured data…

▪ …enabled groundbreaking applications in
fields where data are represented as graphs

GNNs are one of the Hottest Sub-fields in ML Today

▪ About 4% of ICLR 2022 submitted papers using GNNs

GNNs in a Nutshell – Classic Graph ML Tasks

▪ Graph Neural Networks (GNNs) are a class of deep learning methods
designed to perform inference on data described by graphs

▪ GNNs are neural networks that can be directly applied to graphs to tackle standard
types of tasks at the node-level, edge-level, and graph-level

▪ We define a graph G(V,E)

▪ V is the set of n nodes or vertices

▪ E is the set of links or edges

▪ Adjacency matrix A with dimensions (n x n)

▪ Matrix of node features 𝑿 ∈ ℝ(n x m)

▪ Many types of graphs: directed, undirected,
bipartite, weighted, heterogeneous, etc.

GNNs in a Nutshell – Examples of Tasks on Graphs

▪ Node Classification
▪ predict a type (label) of a given node, by looking at the labels of the neighbors
▪ usually trained in a semi-supervised way, with only a part of the graph being labeled
▪ E.g., predict amino–acid sequences (e.g., DeepMind’s AlphaFold)

▪ Link Prediction
▪ understand the relationship between nodes in graphs
▪ predict whether there is a connection between two nodes
▪ E.g., infer social interactions in social networks, recommendation systems

▪ Graph Classification and Prediction
▪ classify the complete graph into different categories
▪ similar problems to image classification
▪ E.g., molecule property prediction (protein is an enzyme or not), social analysis, Travel Time

Estimation (e.g., Google Maps)

▪ Graph Clustering
▪ detect if nodes form a certain community
▪ vertex clustering, graph clustering (similarity between graphs)
▪ E.g., identification of communities, anomaly detection

GNNs in a Nutshell – Node Embeddings

▪ How do we learn on graphs? → (deep) embeddings

▪ The notion of node embeddings: map nodes to d-dimensional embeddings such that
similar nodes in the network are embedded close together

▪ The exercise is therefore how to learn these mapping functions f ? Embeddings should

keep the structure of the graph, and incorporate nodes’ neighboring properties

Why not Traditional Deep Learning?

▪ Deep Learning is designed to specific,
structured, simple types of graphs:
grids and sequences

▪ Graphs have no spatial locality as grids

▪ No fixed node ordering as sequences

Generalizing Convolutions to Graphs

▪ CNN on images: convolution takes a little
sub-patch of the image around a pixel
(node) and aggregates information from
its neighbors and itself

▪ The goal is to generalize convolutions
beyond simple lattices…

▪ …but as we said, there is no fixed notion of
locality or sliding window on the graph

▪ And graphs are permutation invariant!

▪ Graphs do not have a canonical order of
the nodes

▪ Graph and node representations should be
the same for ordering 1 and ordering 2

ordering 1

=
ordering 2

Building the Embeddings – the Encoding Function

▪ Recap: GNNs basically consists in encoding the graph in the form of vectors and then
using this encoding to make predictions

▪ Encoder: take a graph and learn an embedding for every node of the graph

▪ Decoder: use the learned embeddings and make predictions

▪ Training: feed embeddings into any loss function and run stochastic gradient descent to train weights

▪ let u and v be two nodes on the graph

▪ xu and xv their corresponding node feature vectors

▪ the encoding function ENC(u) y ENC(v) convert the
feature vectors to zu and zv in the embedding space

▪ the decoding function is simply the similarity

between nodes: similarity(u, v) ≈ zT
v . zu

▪ challenge→ come up with the encoder function

▪ For simplicity, let us consider a simple type of GNN – Graph Convolutional Network (GCN)

▪ We are looking for an encoder function which should be capable of:

▪ Integrating locality information (local graph neighborhoods)

▪ Aggregating information

▪ Stacking multiple layers (computation) – deep graph encoders

Graph Convolutional Networks (GCNs)

▪ Locality information → the neighborhood of a node
defines a computation graph (directed graph where
nodes correspond to mathematical operations – acts
as a functional description of a computation)

▪ Key idea→ generate node embeddings based on
local network neighborhoods.

Computation Graph

Graph Convolutional Networks (GCNs)

▪ Key idea→ generate node embeddings based on local network neighborhoods (k hops),
using computation graphs

▪ Now that we have the local information coded in a graph structure, we do data aggregation

k hops for

nearest neighbors

input graph

embedding for node A

computation graph

for node A

▪ Every node defines a computation graph based on its neighborhood

Graph Convolutional Networks (GCNs)

Neighborhood Aggregation with Deep Encoders

What do we put in the boxes?

1
2

▪ Nodes aggregate information from their neighbors and apply
neural networks

(1) Basic aggregation: average information from neighbors

(2) Apply neural network

Deep Encoders – Many Layers

▪ Model can be of arbitrary depth – depends on the 𝑘 hops for NNs

▪ Nodes (𝑣) have embeddings at each layer 𝑘→

▪ Layer – 0 embedding of node 𝑣 is its input feature, 𝑥𝑣

▪ Layer – 𝑘 embedding gets information
from nodes that are 𝑘 hops away

▪ Example:

▪ 𝑥A and 𝑥C are the inputs at Layer-0

▪ Both feature vectors are aggregated and passed
through an activation function in Layer-1

▪ And then passed to the next Layer-2

Formulation of the Deep Encoder

𝑘 {1, .., K}

total number of layers

▪ Initial Layer-0 embeddings are equal to node features

▪ N(𝑣) is the set of neighboring nodes (embeddings)

▪ Non-linearity (activation function) → e.g., ReLU

▪ Matrices W𝑘 and B𝑘 are the trainable weights

▪ After K layers of aggregation, we obtain the embedding for node 𝑣→ z𝑣

▪ To train the model (parameters), we need to define a loss function on the embeddings

▪ We can feed the embeddings into any loss function and run SGD to train the weights

▪ Training can be supervised or unsupervised

▪ Supervised: train model for supervised task, e.g., node classification, using node labels y

▪ Unsupervised→ use graph structure as supervision: similar nodes have similar embeddings

▪ Unsupervised loss function can be a loss based on node proximity in the graph

Training the Model to Generate Embeddings

e.g., L2 norm if y are real numbers, Cross Entropy (CE) for categorical y

node embeddings

node similarity function
decoder (e.g., inner product)

GNN Design – Just the Tip of the Iceberg

▪ Many decisions and options to chose from when designing a GNN

1. Define the graph structure

2. Define the graph type and scale

3. Design the loss function for the planned task

4. Decide Graph Computational components

▪ Propagation modules

▪ Sampling modules

▪ Pooling modules

▪ Variations depending on type of graph

GNN Design – Computational Components

▪ Propagation modules

▪ Sampling modules

▪ Pooling modules

▪ Variations depending on type of graph

GNN Design – Computational Components

Graphs are the new frontier of deep learning

=
Drive the development of neural networks

that are much more broadly applicable

GNN vs CNN vs Transformers

▪ Recap: CNNs can be seen as a special GNN with fixed neighbor size and ordering:

▪ The size of the filter is pre-defined for a CNN

▪ The advantage of GNN is it processes arbitrary graphs

▪ CNNs are NOT permutation equivariant → switching the order of pixels will
leads to different outputs

▪ Transformers: the most popular architecture to handle sequential data (text)

▪ Fully rely on self-attention: every token (word) attends to all the other tokens
via matrix calculation

isnamemy Pedro

text
is

name

my Pedro

complete graph

GNN vs CNN vs Transformers

▪ Recap: CNNs can be seen as a special GNN with fixed neighbor size and ordering:

▪ The size of the filter is pre-defined for a CNN

▪ The advantage of GNN is it processes arbitrary graphs

▪ CNNs are NOT permutation equivariant → switching the order of pixels will
leads to different outputs

▪ Transformers: the most popular architecture to handle sequential data (text)

▪ Fully rely on self-attention: every token (word) attends to all the other tokens
via matrix calculation

isnamemy Pedro

text
is

name

my Pedro

complete graph

Transformer layer can be seen as a
special GNN that runs on a fully-connected

“word” graph

▪ Networks are graphs ☺…the success of GNNs in recent years creates a great opportunity for a wide
range of networking problems

▪ GNNet targets the application of Graph Neural Network (GNN) technology to networking problems

▪ Help building a strong community among those of us interested in what GNN can bring to networking

▪ Include a Special Session featuring the best solutions from the BNN-UBP GNNet challenge 2022

GNNet – 1st Graph Neural Networking Workshop @CoNEXT 2022

Albert Cabellos Pere Barlet-Ros Franco Scarselli Pedro Casas

Thanks

Dr. Pedro Casas

Data Science & Artificial Intelligence

AIT Austrian Institute of Technology @Vienna

pedro.casas@ait.ac.at

http://pcasas.info

